
Incremental elasticity for NoSQL data stores
Antonis Papaioannou∗† and Kostas Magoutis∗‡

∗Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion 70013, Greece
†Computer Science Department, University of Crete, Heraklion 70013, Greece

‡Department of Computer Science and Engineering, University of Ioannina, Ioannina 45110, Greece

Abstract—Service elasticity, the ability to rapidly expand or
shrink service processing capacity on demand, has become a first-
class property in the domain of infrastructure services. Scalable
NoSQL data stores are the de-facto choice of applications aiming
for scalable, highly available data persistence. The elasticity
of such data stores is still challenging, due to the complexity
and performance impact of moving large amounts of data over
the network to take advantage of new resources (servers). In
this paper we propose incremental elasticity, a new mechanism
that progressively increases processing capacity in a fine-grain
manner during an elasticity action by making sub-sections of the
transferred data available for access on the new server, prior
to completing the full transfer. In addition, by scheduling data
transfers during an elasticity action consecutively between each
of the pre-existing servers and the new server, rather than as
simultaneous transfers, incremental elasticity leads to smoother
elasticity actions, reducing their overall impact on performance.

I. INTRODUCTION

Operators of successful Internet-scale applications invari-
ably see the growing popularity of their services translate
into the need for more data capacity, higher I/O performance,
and continuous operation. Data demands have been growing
exponentially in recent years and distributed data stores have
been gaining popularity as a means to addressing these needs.
Rather than relying on centralized storage arrays, distributed
data stores consolidate large numbers of commodity servers
into a single storage pool, providing large capacity and high
performance at low cost over an unreliable and dynamically-
changing (often cloud-based) infrastructure.

The emergence of Web 2.0, social networking, and the
Internet of Things increased significantly the sources of new
information (applications, people, devices) and resulted in a
huge need for the storage of data. IoT alone is expected to
generate a staggering 400 zettabytes (ZB, each about a billion
TB) of data each year by 2018 [1]. Although part of the data
may be stored temporarily for subsequent analysis, storage
space and throughput requirements rise dramatically during
time periods where large amounts of new data is created.
Data-intensive applications therefore require data engines that
are elastic (can adapt resources to requirements dynamically),
accommodating strong data growth and allowing new nodes
to join (or leave) the system gracefully, with minimal perfor-
mance and availability loss, at any given time.

In addition to growing data capacity needs, applications
(especially those developed by modern, highly responsive Web
services) demand high performance from the underlying data
stores. These requirements are usually described in terms

of throughput (e.g. operations per second) and/or latency
(time required for each request to be served). A number of
large-scale data stores in the marketplace today used (often
as a service) by Internet enterprises are designed to offer
performance guarantees expressed as service-level objectives.
A premier example is DynamoDB [2], a proprietary scalable
key-value store service offered by Amazon. While DynamoDB
has been successful with applications that require fast and
predictable performance, it will not scale automatically if the
workload requirements change. Users should explicitly request
more throughput. However the effect of such a change request
is not instant. Amazon states that the “increment of throughput
will typically take anywhere from a few minutes to a few
hours”1. This means that throughput spikes cannot be rapidly
remedied. As a result, applications using DynamoDB may
experience periods where a portion of their requests will be
dropped or blocked until the system is reconfigured. This
leads application developers to opt for ad-hoc solutions [3],
[4] which may violate application semantics (e.g. violate
durability semantics when using intermediate buffers/queues
in order to handle request throttling by DynamoDB). A likely
cause of DynamoDB’s inability to rapidly support a changing
service-level objective is that rapid adaptation would have an
adverse impact on existing guarantees to applications.

There is usually a trade-off between the duration of the
adaptation actions and their performance impact during adap-
tation. Ideally, the system should be able to adapt to data
growth or workload changes as quickly as possible to satisfy
application requirements. Nevertheless, the more aggressive
the adaptation action the deeper its impact on application
performance. In this paper we focus on the performance
impact of data elasticity actions in NoSQL data stores. In
particular we target data stores that horizontally partition data
(referring to data partitions as shards) and spread them as far
as possible on the available nodes for load balancing.

Several popular data stores [5], [6], [7], [8] require a new
(joining) node to take responsibility for sections of data spread
across the existing nodes to achieve a more efficient load bal-
ancing, receiving the corresponding data via network transfers.
One common option to carry out these network transfers [5],
[7], [8] is to perform them in parallel towards the new node,
raising a number of challenges: First, a large number of nodes
are simultaneously reducing their processing capacity while
engaged in data transfer, resulting in an overall performance

1https://aws.amazon.com/dynamodb/faqs/ (retrieved April 2017)

Fig. 1: Performance characteristics of parallel network transfers (left) vs. incremental elasticity (right)

impact. Second, the new (joining) node is solely engaged in
data transfer (at the speed of its network link) and cannot
contribute processing capacity until the time all data transfers
are over. Third, with all data transfers completing at about the
same time, associated activities such as data compactions are
likely to also overlap, resulting in significant I/O activity at
the new node during the early stages of its normal operation
[9]. Fourth, the many-to-all communication pattern in this
phase is known to under certain circumstances be a cause
of throughput collapse in large-scale data centers [10]. Our
incremental elasticity technique addresses all four challenges.
Our evaluation in this paper focuses primarily on the first two.

Incremental elasticity replaces parallel network transfers
with a sequential communication schedule where senders take
turns sending data to the new node. As soon as a transfer
is over, the associated data are becoming available for ac-
cess on the new node, while a subsequent transfer of data
takes place. The expected performance benefits of incremental
elasticity (visualized in Figure 1) are summarized as follows:
Fewer nodes are involved in network transfer at any time,
reducing the overall performance drop during elasticity. With
data becoming available on the new node as soon as data
transfers complete, processing capacity increases in a step-
wise incremental fashion, providing early benefits of the newly
available capacity while the elasticity action is still on. With
only a single sending server active at a time, the delay due to
its higher load may be masked by other replicas of the data it
owns.

In this paper2, we demonstrate the benefits of incremental
elasticity using Cassandra [5], a popular open-source key-value
store inspired of Dynamo [6]. Our contributions are:

• A new mechanism for gradually increasing the process-
ing capacity of scalable data stores called incremental
elasticity

• An implementation of incremental elasticity in the con-
text of the Cassandra column-oriented key-value store

• An experimental evaluation of the benefits of incremental
elasticity vs. simultaneous parallel network transfers un-
der Yahoo! Cloud Serving Benchmark (YCSB) workloads

2A preliminary two-page version and a poster appears in ICDCS’17 [11]

The remainder of this paper is structured as follows: Sec-
tion II provides background on elasticity mechanisms in data
stores, including specifics on Cassandra. Section III describes
our design and implementation of incremental elasticity. Sec-
tion IV describes the performance results and comparison of
incremental elasticity vs. parallel transfers in Cassandra under
different YCSB workloads. Section V discusses related work
and finally we summarize our conclusions in Section VI.

II. BACKGROUND

Elasticity is the ability of a system to dynamically (in an
online fashion) adjust its processing capacity by adding or
removing resources to meet workload changes. Changes to
system capacity while a workload runs typically impact its
performance. Ideally, data store elasticity should result in an
adjustment of processing capacity proportional to the resources
being added or removed, completes at the shortest possible
time, and impacts running workloads as little as possible.
To achieve a proportional increase in overall performance,
the data migrated should be chosen appropriately so as the
elasticity action results in a well-balanced system. Elasticity
may either expand capacity in a horizontal manner, adding
or removing nodes from a cluster, or in a vertical manner in-
creasing or decreasing the amount of resources (CPU, memory,
I/O) of existing nodes of a cluster. In this paper we focus on
horizontal elasticity in data stores whose nodes privately own
and manage their storage resources (local or network disks
or SSDs). Thus, a new (joining) server must receive the data
it manages to its own storage upon joining the cluster, via
network transfers from other data-store nodes. In such a model,
elasticity actions apply to both compute and storage resources.

Several popular data stores [5], [6], [7], [8] achieve data
partitioning using consistent hashing [12] for mapping keys to
nodes. The specific variation of consistent hashing used in this
paper (implemented by the Cassandra [5] column-oriented data
store) is to associate each physical node with a number of non-
contiguous key ranges, tokens, hashed to a ring (Figure 2 left).
Each token identifies a key range, starting from the previous
token (in counterclockwise order) up to it. Tokens are also
referred to as “virtual” nodes or vnodes. Keys are mapped first
to tokens and then to nodes. This allows a finer granularity in

Fig. 2: Creating shards through tokens (left); cluster expansion via parallel network transfers (right)

data distribution among servers [13]. Cluster expansion via the
addition of a new node introduces a number of new tokens to
the ring (e.g. tokens of Node 6 in Figure 2 right). The new
node will take responsibility for key ranges identified by its
tokens, and will receive the corresponding data via network
transfers from previous data owners (Figure 2 right).

To durably store data, Cassandra implements a version of
Log-Structured Merge (LSM) trees [14]. Cassandra nodes
apply each incoming update to a write-ahead log for durability
and then to an ordered memory buffer (the memtable), which
is periodically flushed to an indexed ordered file (the
SSTable). A number of SSTables may be consulted to retrieve
a requested key/value. Periodic compactions (merge sort
runs) of SSTables aim to maintain a small number of large
SSTables, improving read performance.

Elasticity via parallel data transfers. The Cassandra column-
oriented data store performs elasticity actions by transferring
data to a joining node via parallel network transfers. The
associated configuration (state) changes are communicated via
a gossip protocol [5]. At startup, a new (joining) node uses the
gossip protocol to announce itself to the cluster and to receive
information about the node topology as well as the tokens that
each existing node owns in the cluster. The startup phase of a
joining node is also referred to as bootstraping. An important
task during this phase is to select the tokens for which the new
node will take responsibility, and to initiate the data transfer
corresponding to these tokens from existing cluster nodes.

Cassandra uses a streaming protocol to handle the data
exchange among nodes in the cluster. Bootstrap of a joining
node involves several stream sessions, each involving the
joining node (receiver) and one of the existing nodes in the
cluster (follower), transferring data between each pair of nodes
in four steps: (1) The receiver initiates a stream session with
a follower; (2) After the initial handshake, the receiver sends
a list of tokens (key ranges) it needs from the follower. Upon
receiving the preparation message, the follower records which
sections of SSTable files it has to send and enters the streaming

phase; (3) During the streaming phase the follower sends the
data to the new node; (4) Finally after all the data transfer
tasks complete, the nodes agree to close the session.

During bootstrap, the joining node does not serve client
requests. To maintain availability during elasticity actions,
Cassandra does not suspend updates on tokens (key ranges)
involved in streaming and about to change ownership. To
ensure that the joining node will receive such updates, Cas-
sandra operates as follows: Prior to initiating streaming, the
bootstrapping node announces the tokens that it will be re-
sponsible for. Existing nodes in the cluster mark these tokens
as pending and forward a copy of any write request on the
pending tokens to the joining node (in the following we
refer to these writes as shadow writes). In this way, when
the new node finally joins the cluster, it will already have
received any updates accepted by the system after streaming
started, avoiding consistency gaps that may lead to repair [15]
operations in the future. When all streaming sessions complete
and all data are available to the new node, it enters normal
state and announces (through gossip) its availability to serve
client requests. Note that token transfers typically materialize
as many small SSTables in the new node, triggering several
compactions to consolidate them.

The aggregate ability of all sending nodes to transfer
data may exceed the available network throughput at the
receiving side. TCP will thus appropriately throttle each
sender. Additionally, Cassandra offers a configuration op-
tion (stream throughput outbound megabits per sec) to limit
each sender’s streaming throughput. This addresses an empiri-
cal observation (e.g.[16]) that high streaming throughput often
leads to significant performance variability. Throttling sources
reduces the impact of streaming on performance, however
it would also increase the duration of elasticity without any
incremental benefit in the meantime, as all tokens are made
available only at the end of the streaming sessions.

III. DESIGN AND IMPLEMENTATION

Design. At its core, incremental elasticity involves a commu-

nication mechanism that transfers data to a joining node via a
sequential schedule where senders take turns sending data to
the new node. As soon as a transfer is over, the associated data
are becoming available for access on the new node, while a
subsequent transfer of data is in progress. To enable incremen-
tal elasticity, senders should either cooperatively decide the
schedule of data transfers or assign the task of coordinating
those transfers to the joining node, aiming for sequential
transfers between a pair of nodes (existing node, new node),
allowing only one active such session at a time. Assuming
the simpler solution that the joining node is responsible for
coordinating data transfers in a pair-wise manner, the choice
of which node to stream from can be simple, such as using
a round-robin policy or random. Other policies however, such
as starting from nodes that are better prepared for the transfer,
are possible. The data transfer protocol used should support
pair-wise transfers and orchestration by the new (receiving)
node, as can (with appropriate modifications) the streaming
protocol described in Section II.

At startup the new (joining) node should build a current
view of the system by contacting its membership service
and receiving information about the node topology and data
distribution in the cluster (Figure 2 left). At this point it must
be decided which parts of the data the joining node will
eventually serve. A key design point for incremental elasticity
is to ensure announcements of data ownership (e.g., that a
certain region of data is now served by the new node) are
now performed incrementally and in a piecemeal fashion. This
affects both read and write operations: As soon as a section
of data is now owned by the joining node, reads are now
directed to it, and writes need no longer be performed twice
(cf. shadow writes described in Section II).

Under parallel data transfers, a joining node is fully dedi-
cated to processing stream sessions as fast as its CPU resources
are able to cope with network traffic (ideally at link speed). As
the aggregate network bandwidth of all senders may far exceed
the network bandwidth of the receiver, senders are expected
to be throttled by TCP, if not by data-store-level streaming
limits. Replacing parallel stream sessions by sequential ones
should not necessarily increase the overall duration of the
elasticity action, if data transfer still happens at the speed
of the receiver’s network link. In incremental elasticity, the
same streaming throughput could be achievable even with
a single sender, if the sender is able to send as fast as its
network link allows it. While we initially aimed to achieve
the same duration of elasticity actions between parallel and
incremental elasticity, in our implementation we found that
senders cannot achieve full network speed, even with the
addition of multithreading techniques. However, reducing the
speed at which the joining node processes incoming traffic
means that the node has more CPU resources to devote to
processing requests after the first batch of tokens become
available. Any delay in completing the elasticity action is
thus compensated by additional processing capacity avail-
able during the action. Even if we are able to (through a
more aggressive implementation) achieve full link speed at

the receiver, acquiring additional processing capacity there
can be achieved by dynamically changing the allocation of
memory and virtual CPU resources at runtime through most
hypervisors, for the duration of elasticity.

We consider the above design principles as straightforward
and believe that they can easily be supported by many
distributed data stores. In what follows we describe our
implementation in the Cassandra column-oriented data store.

Implementation. Our implementation extends Apache Cas-
sandra version 3.7, especially its gossip and streaming com-
ponents. Each Cassandra node has a StreamManager module
responsible for all streaming operations. When a new node
bootstraps it creates a StreamPlan object to associate token
requests with the existing nodes. Internally it builds Stream-
Sessions to handle network communication between nodes.
The StreamPlan is associated with a StreamCoordinator com-
ponent that manages the StreamSessions. StreamCoordinator
initiates the stream sessions sequentially ensuring that only
one is active at a time. Generally speaking, we could schedule
transfers between arbitrarily-sized subgroups of nodes and the
joining node but we consider only subgroups of size one in
this paper. As soon as a stream session is over, it selects the
next session to start from the inactive stream sessions queue.

With incremental streaming we expect that the aggregate
processing capacity of the cluster should increase each time a
batch of tokens are made available to the new node. At startup
when the joining node announces itself to the cluster, it enters
the joining state. In this state, it does not receive any client
requests (either directly from clients or re-directed from other
nodes). State transitions are announced using Cassandra’s
gossip protocol. As soon as the first streaming session is over,
the bootstrapping node enters in state partial join (introduced
in our implementation) in which it remains until the end of
the streaming process. This state indicates that the node has
available data and is able to serve client request on a subset
of tokens but is not yet fully integrated to the cluster. To
support the partial join state, we introduced a new type of
gossip message sent by the new node when a stream session
completes, announcing the state and informing the cluster of
the tokens the new node is responsible for. Nodes receiving
this message update their tokens-to-node mapping, and start
to appropriately redirect client requests to the new node.

Modifying the scheduling of token transfers means that
we should modify the scheduling of shadow writes as well.
In incremental elasticity, shadow writes only concern tokens
that are being streamed at a specific time period. In standard
Cassandra, nodes mark as pending those tokens that the joining
node advertises as tokens it will eventually be responsible for.
In our implementation, only tokens currently being streamed
are shadow-writed until the end of the current streaming
session. Tokens that correspond to future streaming sessions
are fully served by their current owning nodes and not shadow
written. This is possible since the new node announces the
pending tokens during the preparation step of each stream
session and tokens become available when the session is

complete. Overall this reduces the load that shadow writes
place on the joining node during streaming. As soon as all
data transfers are complete, the new node announces its state
as normal to the cluster.

IV. EVALUATION

A. Experimental testbed and methodology

Our experimental testbed is a cluster of 9 servers, each
equipped with a dual-core AMD Opteron 275 processor at
2.2GHz with 12GB of main memory. All servers run Ubuntu
14.04 64-bit with a 3.14.1 Linux kernel and are interconnected
via a 1Gb/s Ethernet switch. Servers store data on a dedicated
300GB 15,500 RPM SAS drive that delivers 120MB/s in
sequential reads and 250 IOPS in random reads with a 4K
block size. Hard drives are formatted with the ext4 file system.

We use Cassandra version 3.7 with the OpenJDK 1.8.0-
91 Java runtime environment. Our evaluation workload is
the Yahoo Cloud Serving Benchmark (YCSB) [17] version
0.11 executing on a dedicated server. The benchmark is
configured to produce two different mixes of reads vs. up-
dates/writes: 95%-5% (Workload B) and 50%-50% (Workload
A) respectively, with requested keys selected randomly with
the Zipf distribution. The YCSB evaluation dataset consists
of 80 million unique records resulting to 34GB of data per
node when loaded. Our initial Cassandra cluster consists of 7
servers. During elasticity actions an 8th server joins the cluster.
The replication factor is set to 3.

We experiment with Cassandra data-consistency levels
QUORUM and ALL. QUORUM requires responses from a ma-
jority (2 out of 3 in this case) of replicas to complete a
read or write operation, whereas ALL involves all replicas. In
QUORUM reads, 2 of the 3 replicas return only a checksum of
the data, a Cassandra optimization to reduce network traffic.

The number of YCSB client threads (number of parallel
connections between database client and servers) is set to
30 and 25 for the QUORUM and ALL consistency levels
respectively, empirically determined to stress the cluster while
keeping average response time under 50ms (considered a
reasonable threshold). We used the default settings for node
caches, namely key cache enabled and row cache disabled
(however nodes benefit from caching at the OS buffer cache).
Unless stated otherwise, we do not limit each node’s streaming
throughput (stream throughput outbound megabits per sec
set to 0). For repeatability, we modified the default
token partitioner to ensure that each Cassandra node will
be responsible for serving the same key ranges across
experiments. The dataset is loaded fresh onto Cassandra
nodes before each experiment.

Impact of compactions. To isolate the performance impact of
SSTable compactions on the joining node from the impact of
the streaming process itself we chose to disable compaction
activities on the joining node (node 8) during its bootstrapping
process. This choice was based on the observation that high
compaction activity is significantly penalizing the joining node
right after the elasticity action under parallel streaming. It

also reflects standard practice in field use of Cassandra [9].
We observed that under incremental streaming, the impact of
compactions is spread over time, however for fairness we used
the same delayed compaction policy in that case as well. Other
solutions to reducing the impact of compactions on the joining
node are to limit compaction throughput and the number of
active compaction tasks at any time, however an in-depth
investigation of this aspect is beyond the scope of this paper.

B. Analysis of experimental results

Figure 3 depicts YCSB throughput (YCSB ops/sec) with
the workload mix for 95% reads 5% writes and QUORUM
consistency. The elasticity action is triggered 30 minutes
into the experiment when the system is deemed to have
reached a steady state. The duration of streaming activities
is highlighted by dashed vertical lines. In the inset we depict
a bar chart indicating the relative performance change during
the elasticity action vs. pre-elasticity performance. The latter
is the average throughput during the most recent 5-minute time
window before the elasticity action starts. Each histogram bar
corresponds to an average over a 2-minute interval window.

Figure 3a (parallel streaming) exhibits a clear performance
hit of about -14% during data streaming, followed by a
performance increase (vs. pre-elasticity levels) due to the
expansion of the cluster after the elasticity action is over (640
vs. 820 ops/sec). Performance under incremental streaming
(Figure 3b) exhibits very little degradation into the early
stages of elasticity (-2.5%) and a performance increase via the
growing processing capacity of the joining node. This result
highlights the benefit of decreased performance impact during
elasticity actions with incremental streaming. Streaming takes
26 minutes for incremental vs. 9 minutes for parallel, with
both systems taking additional time to reach their full post-
elasticity throughput. Taking this additional time into account,
we observe that Cassandra with incremental streaming takes
about twice the time to reach its full post-elasticity throughput
compared to parallel streaming.

To statistically validate the results depicted in Figures 3a
and 3b, we calculated the average performance change dur-
ing streaming over ten runs. The maximum performance hit
observed during parallel streaming over those runs was on
average -12.96% (standard deviation 1.17%) with a maximum
of -15.08%. During incremental streaming, the maximum
performance hit over the ten runs was on average -2.32% at
the beginning of streaming, with a near-linear decrease as the
new node progressively joins the cluster.

One (existing) way to limit the performance impact of
streaming is to actively throttle parallel streaming transfers
through a Cassandra configuration setting (stream through
put outbound megabits per sec). To highlight the benefits
of incremental streaming over this solution, we repeat the
previous experiment using standard Cassandra set for limiting
streaming throughput to a level comparable to the aggre-
gate network throughput achieved with incremental streaming.
Under incremental streaming (Figure 3b), the joining node
receives tokens at 210Mbps (vs. 490Mbps with unthrottled

 0

 200

 400

 600

 800

 1000

 400 800 1200 1600 2000 2400 2800 3200 3600 4000
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140
Y

C
S

B
 T

h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(a) Parallel streaming

 0

 200

 400

 600

 800

 1000

 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(b) Incremental streaming

Fig. 3: Elasticity under YCSB workload B (95% read, 5% writes), consistency QUORUM

 0

 200

 400

 600

 800

 1000

 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

Fig. 4: Parallel streaming with network transfer throttling
(same configuration as in Figure 3)

 0

 200

 400

 600

 800

 1000

 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

Fig. 5: Serial but not incremental streaming (same configura-
tion as in Figure 3)

 0

 100

 200

 300

 400

 500

 600

 700

 400 800 1200 1600 2000 2400 2800 3200 3600 4000
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(a) Parallel streaming

 0

 100

 200

 300

 400

 500

 600

 700

 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(b) Incremental streaming

Fig. 6: Elasticity under YCSB workload B (95% read, 5% writes), consistency ALL

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

 /
 s

e
c
)

Time (seconds)

read write

(a) Consistency Level ALL

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

 /
 s

e
c
)

Time (seconds)

read write

(b) Consistency Level QUORUM

Fig. 7: Request rate served by joining node during streaming, YCSB workload B (95% reads, 5% writes)

parallel transfers). We thus set the throughput limit of each
(parallel) sender to 30Mbps so that the joining node receives at
the same rate (30×7=210Mbps) as in incremental streaming.
Figure 4 shows that the performance impact under throttled
parallel transfers is reduced to -6% over a 23-minute elastic-
ity interval vs. -14% over 9 minutes in unthrottled parallel
streaming. Receiving at 210Mbps however, means that a large
fraction of the processing capacity of the joining node goes
unused, explaining the performance advantage of incremental
elasticity.

Another way to showcase the positive impact of increasing
the processing rate of the joining node during elasticity is
to contrast it with a system that schedules sequential pair-
wise transfers (as in incremental streaming) but does not
make transfered tokens incrementally available on the joining
node. Results with such a system (Figure 5) demonstrate that
performance during elasticity remain at the same level as
before elasticity, through the end of the streaming process:
Although the joining node receives data from the existing
servers in pair-wise manner (similar to incremental elasticity)
the transfered data are not available for access to the new node.
This means that the capacity of the cluster remains the same
until the end of elasticity action when the new node announces
the ownership of the received tokens and is fully integrated to
the system (as in parallel streaming).

The increase of the cluster processing capacity in a step-
wise fashion can also be observed by examining the rate
of requests handled at the new (joining) server. Figure 7
illustrates that the joining node indeed serves progressively
more client requests (reads/writes served locally –excluding
those just coordinated– by the joining node) during streaming.
The time between two dashed lines in the graph corresponds to
a streaming session between the joining node and an existing
server. Each data point represents the rate of requests served in
a time window of two seconds. Figure 7a shows the requests
that are served by the joining node under consistency level
ALL. In this case each request must be acknowledged by all

replicas, thus the joining node is involved on all requests for
tokens it has already received. Figure 7b depicts the number of
client requests served by the joining node under consistency
level QUORUM. In both cases, we can observe the increasing
number of requests as the streaming process progresses. In
case of consistency level QUORUM the steps are somewhat
more noisy (the concentration of points is wider) as the new
node may or may not be asked to participate in the majority (2
of 3) of replicas that serve a request. In Figure 7 we observe
that the rate of write requests is higher during the elasticity
action in both cases. This is due to the extra overhead of
shadow writes during streaming.

Figure 6 depicts YCSB throughput for the same dataset
for 95% reads 5% writes (workload B) under the stricter
consistency level ALL. We observe similar trends as with the
previous configuration applying consistency level QUORUM.
With parallel streaming the throughput drops up to -17%
during the elasticity action. Incremental streaming exhibits
little degradation (-2.5%) at the start of the streaming phase.
Under this configuration the performance increases in smaller
steps during the elasticity action. Although with incremental
elasticity one streaming node is active at a time, every request
involves all replicas and thus performance is determined by the
slowest replica. A small fraction of requests corresponding to
tokens that are part of the active streaming session involve the
streaming source node, and thus are expected to be impacted
due to its higher load during streaming. Requests that do not
hit this node will not be impacted under this consistency level.

Repeating these experiments with the 50%-50% read/write
workload mix shows similar trends with the exception that
the performance impact during streaming increases under both
parallel and incremental streaming. With QUORUM consis-
tency, parallel streaming exhibits steady performance degra-
dation (similar to that observed Figure 3) up to -11%, while
incremental elasticity exhibits a smoother transition to the new
configuration with a maximum performance hit less than -4%
during the early stages of elasticity, increasing to +10% as

 0

 10

 20

 30

 40

 50

 60

 70

 80

 500 1000 1500 2000 2500 3000 3500 4000 4500

Y
C

S
B

 l
a
te

n
c
y
 (

m
s
)

Time (seconds)

read threshold

(a) Parallel streaming

 0

 10

 20

 30

 40

 50

 60

 70

 80

 500 1000 1500 2000 2500 3000 3500 4000 4500

Y
C

S
B

 l
a
te

n
c
y
 (

m
s
)

Time (seconds)

read threshold

(b) Incremental streaming

Fig. 8: YCSB latency under workload B (95% read, 5% writes), consistency QUORUM

the streaming process progress. With consistency level ALL,
parallel streaming exhibits a performance penalty up to -16%,
whereas incremental elasticity exhibits a performance hit of up
to -6.5% at the early stages of streaming, increasing slightly
over the base line (+3%) until the elasticity action completes.

C. Response time

The response-time trends observed in previous experiments
are identical to those observed for throughput, with throughput
drops corresponding to response-time increases (response-time
figures omitted due to space limitations). In this section we aim
to extend our evaluation in two directions: First, to provide
a response-time view of incremental vs. parallel streaming.
Second, to demonstrate a scenario of a variable-load client and
a simple elasticity controller that drives an elasticity action
to accommodate the increased load. Our evaluation sets the
incremental elasticity technique into context with quality of
service (QoS)-aware data stores that often rely on response-
time targets to maintain specific goals [6], [18], [19], [20].

Variable levels of client load may occasionally result to a
system exceeding a fixed response-time goal. A QoS-aware
controller typically incorporates a monitoring component [20]
that combines response-time metrics reported across client
processes, analyzes, plans, and executes elasticity actions to
re-provision service capacity as needed. We do not aim to
fully evaluate an elasticity controller in this paper. We use a
simple such controller to compare the impact of incremental
vs. parallel elasticity in maintaining a given response-time
target. Figure 8 depicts YCSB read latency with a 95% read,
5% writes workload mix, consistency QUORUM, under variable
load. The targeted response time of 50ms is highlighted with
a horizontal red line in Figure 8.

Load generated by 20 YCSB threads results initially in 40ms
average response time for read operations. 30 minutes into
the experiment when the system has reached steady state, we
increase the load by adding 10 more client threads to a total
of 30, leading to an increase of the average response time

above 50 ms. About 5 minutes later, the controller detects a
response-time target violation and triggers an elasticity action
whose duration is highlighted by dashed vertical lines. Each
data point in Figure 8 is average response-time over a 2-second
window. Under parallel streaming (Figure 8a) we observe that
the elasticity action leads to a further increase of response
times, further exceeding our target. In contrast, incremental
elasticity (Figure 8b) has lower impact on response time,
producing fewer target violations and achieving a smoother
transition to the new configuration.

To quantitatively compare incremental to parallel streaming
with respect to violations of the response-time service-level
objective (50ms in this case) that they produce, we count the
proportion of those requests with response time exceeding our
objective, using the following formula:

score =

Sn∑
i=S1

penaltyi (1)

where S1 and Sn are the first and last interval of the
streaming process, and

penaltyi =

{
1, if resp. time > 50

0, if resp. time ≤ 50
(2)

The score function with the above penalty expresses the
amount of time intervals that the elasticity process results in a
target violation. The execution of Figure 8a (parallel stream-
ing) results to a score of 237 (237 x 2 = 474 seconds) where
the response time exceeds the targeted threshold, whereas the
execution of Figure 8b (incremental streaming) has a score of
144 (144 x 2 = 288 sec), thus incremental streaming has 39%
fewer response-time violations compared to parallel streaming.

In the above analysis, any violation of the response-time
target is considered equally harmful and contributes a penalty
of 1. However, one can argue that the amount by which
the threshold is violated is also practically relevant. We can

capture this factor by replacing formula (2) with (3) in the
score function, thus taking into account by how many ms the
average response time exceeds the target at each data point.

penaltyi =

{
50− (resp. time) if resp. time > 50

0 if resp. time ≤ 50
(3)

According to this penalty function, parallel streaming has
a score of -1170 while incremental streaming has a score of
-440, indicating that incremental elasticity scores 2.6x higher
than parallel streaming when taking into account both the
number of response-time violations and their extent.

In Figure 8 we observe that Cassandra with parallel transfers
is about twice as fast in bringing response time to its stable
post-elasticity level compared to our implementation using
incremental streaming. Thus if an application is insensitive to
service-level violations or performance cost during elasticity,
parallel streaming may be a preferable elasticity mechanism.

V. RELATED WORK

NoSQL systems, like nearly all data-intensive systems,
require reconfiguration over time so that data is redistributed
across server nodes for the purpose of load balancing, ex-
panding/shrinking resources, or rehashing data to server nodes.
Elasticity is a special form of reconfiguration where a fraction
of the overall dataset is moved to new nodes (or taken out
of nodes about to be decommissioned) to grow or shrink
processing capacity in an online manner. In what follows we
look into previous research on reconfiguration in NoSQL data
stores, with a special focus on elasticity.

Several data stores are able to expand or shrink their use
of server resources through migration of shards and replicas.
Petal was an early elastic storage system offering a virtual disk
abstraction featuring incremental reconfiguration [21], namely
the ability to re-stripe a logical disk on fewer or more storage
servers without blocking access to the entire disk. Incremental
elasticity shares the concept of transferring a piece of the
overall state at a time but has different goals.

Several NoSQL data stores use consistent hashing to map
key ranges to server nodes. The basic consistent hashing
algorithm presents some challenges. First, the random position
assignment of each node on the ring may lead to non-uniform
data and load distribution. Second, the basic algorithm is
oblivious to the heterogeneity in the performance of nodes. To
address these issues, a number of NoSQL data stores (among
them Dynamo [6], Cassandra [5], Riak [7], and Voldemort [8])
use a variant of consistent hashing where instead of mapping
a node to a single point in the circle, each node gets assigned
to multiple points in the ring, each such point called a virtual
node. This approach was originally introduced by Karger et
al. [12] and Stoica et al. [22]. Each node in the NoSQL system
can be responsible for more than one virtual node. Systems
using virtual nodes involve all-to-one transfers during elasticity
and can benefit from the use of incremental elasticity.

Ghosh et al. [23] described Morphus, a methodology for
supporting online reconfigurations in sharded NoSQL systems.

Morphus introduces algorithms for re-sharding a database
aiming to reduce the total network transfer volume during
reconfiguration and to achieve a load balanced assignment.
Morphus is implemented within MongoDB and applied to
the case of changing the sharding key of an existing table.
It leverages internal MongoDB mechanisms to reconfigure
secondary shard replicas and transfer data via many-to-all
communication patterns inherent in such resharding scenarios.
Changing the sharding key entails a heavier reconfiguration
compared to adding new servers considered in this paper.

DDS [24] was an early scalable key-value store with the
ability to split partitions (shards) and migrate replicas between
nodes. DDS chooses shard size so as migration of a full shard
is a quick process and opts for migrating replicas at the full
speed of the network rather than a controlled, background
process. The authors of DDS do not detail a complete elasticity
mechanism. The term incremental elasticity has also been used
in the context of array databases [25]. In this work, Duggan et.
al. design an elasticity controller that decides when to expand
an array database cluster and how to repartition a growing
multi-dimensional data set within it. Our use of the term refers
to progressive increases of processing capacity in a fine-grain
manner during an elasticity action and is thus complementary.

GoogleFS and HDFS support elasticity by migrating repli-
cas of file blocks between nodes. HBase, a NoSQL data
store using HDFS as a storage back-end, handles elasticity
at two levels: at the higher level, addition of an HBase node
takes over responsibility for a fraction of shards, without
immediately migrating the HDFS data blocks associated with
those shards. These migrations happen at the next HBase
compaction when new HDFS files are being created.

MongoDB utilizes the cluster balancer module, which mi-
grates data chunks between different shards when the chunk
number ratio of the biggest shard to the smallest one reaches
a certain threshold. MongoDB appears to support an elasticity
mode where data is being served by newly added nodes as
soon as they arrive [26]. Based on the scarce documentation
available for this feature, it does not appear related in any
other way to incremental elasticity. Voldemort [8] uses a
rebalance controller that allows a joining node to participate
in multiple parallel transfers, ensuring that each sender has
only one active token-transfer at a time. Riak [7] supports the
adjustment of the number of node-to-node transfers using a
per-node transfer limit parameter (default 2). It appears that
this parameter controls the number of tokens involved in data
transfers rather than the number of parallel transfers towards
a joining node. It has been used on disk-capacity issues in
expanding clusters [27]) but we have found no systematic
evaluation of its performance impact or a specification of how
data transfers using it are coordinated/managed across nodes.

Konstantinou et al. [28] describe a generic distributed mod-
ule, DBalancer, that can be installed on top of a typical NoSQL
data-store and provide an efficient configurable load balancing
mechanism. Balancing is performed by simple message ex-
changes and typical data movement operations supported by
most modern NoSQL data-stores. In a related work, Konstanti-

nou et al. [29] present a cloud-enabled framework for mon-
itoring and adaptively resizing NoSQL clusters. Kuhlenkamp
et al. [16] evaluate the elasticity of HBase and Cassandra
and show a tradeoff between the speed of scaling and the
performance variability while scaling. These works rely on the
use of generally available elasticity mechanisms and thus could
benefit from the use of the incremental elasticity mechanism.

Data stores offering performance-oriented service-level
agreements (SLAs) such as Dynamo [6] use online elasticity
mechanisms as one among different ways of adjusting pro-
cessing capacity to fit client needs. Typically, a combination
of vertical (increasing single-node processing capacity) and
horizontal (increasing number of nodes) elasticity is used in
this space, also known as scale-up and scale-out elasticity.
Incremental elasticity is an instance of the latter. Recent
work [20] proposed a measurement-based prediction approach
to data store SLA by means of elasticity actions over the Cas-
sandra NoSQL store. This paper improves over this approach
by reducing the impact of elasticity actions as the data store
adapts to workload changes.

Brown et al. [30] introduce a methodology for bench-
marking the availability of RAID arrays after a disk crash,
highlighting a trade-off between the speed of data reconstruc-
tion and its impact on application performance, similar in
spirit to the elasticity tradeoff explored in this paper. They
study the policies used by different software RAID imple-
mentations (Solaris, Linux, Windows) and find that Linux
follows the slowest approach, dedicating less disk bandwidth
to reconstruct data posing no significant effect on application
performance, whereas Solaris defines the opposite extreme
making its RAID reconstruction over 7 times faster than Linux,
albeit at a significant performance hit during reconstruction.

VI. CONCLUSIONS

In this paper we propose incremental elasticity as a way
to reduce the performance penalty incurred during elasticity
actions in distributed data stores. Our implementation on the
Cassandra column-oriented data store shows that such an im-
plementation is feasible with reasonable complexity. Our eval-
uation shows that incremental elasticity results in smoother,
more stable elasticity actions compared to parallel network
transfers across all cases considered. Incremental elasticity
reduces the performance impact (-2.32% vs. -12.96% drop in
aggregate throughput for 95%-5% reads/writes and QUORUM
consistency, -2.5% vs. -17% under 95%-5% reads/writes and
ALL consistency) compared to parallel network transfers. In
a scenario involving a service-level management controller,
incremental elasticity leads to 39% fewer response-time vio-
lations compared to parallel streaming during elasticity.

REFERENCES

[1] Cisco, “Cisco global cloud index: Forecast and methodology
2013-2018 white paper,” https://www.terena.org/mail-archives/storage/
pdfVVqL9tLHLH.pdf, accessed: 07/2017.

[2] “Amazon DynamoDB,” https://aws.amazon.com/dynamodb/, accessed:
07/2017.

[3] “Using DynamoDB in production,” http://blog.sendwithus.com/
using-dynamodb-production/, accessed: 07/2017.

[4] “Falling in and out of love with DynamoDB,” http://0x74696d.
com/posts/falling-in-and-out-of-love-with-dynamodb-part-ii/, accessed:
07/2017.

[5] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, Apr. 2010.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dy-
namo: Amazon’s highly available key-value store,” in Proc. of 21st
ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
Stevenson, Washington, USA, 2007.

[7] Basho Riak NoSQL database. http://docs.basho.com/riak/kv/. Accessed:
07/2017.

[8] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project Voldemort,” in
Proc. of the 10th USENIX Conference on File and Storage Technologies,
FAST’12, San Jose, CA, 2012.

[9] Bootstrapping performance improvements for Leveled Compaction.
http://www.datastax.com/dev/blog/bootstrapping-performance-
improvements-for-leveled-compaction. Accessed: 07/2017.

[10] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan, “Measurement and analysis of TCP
throughput collapse in cluster-based storage systems,” in Proc. of the
6th USENIX Conference on File and Storage Technologies, FAST’08,
San Jose, California, 2008.

[11] A. Papaioannou and K. Magoutis, “Incremental elasticity for nosql
data stores,” in Proc. of the 37th IEEE International Conference on
Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 2017.

[12] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web,” in Proc. of
the 29th Annual ACM Symposium on theory of Computing, STOC’97,
El Paso, Texas, United States, 1997.

[13] How data is distributed across a cluster (using virtual nodes).
”https://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/
archDataDistributeDistribute.html”. Accessed: 07/2017.

[14] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The Log-structured
Merge-tree (LSM-tree),” Acta Inf., vol. 33, no. 4, Jun. 1996.

[15] Read repair: repair during read path. ”https://docs.datastax.com/en/
cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html”.
Accessed: 07/2017.

[16] J. Kuhlenkamp, M. Klems, and O. Röss, “Benchmarking scalability
and elasticity of distributed database systems,” Proc. of the VLDB
Endowment, vol. 7, no. 12, pp. 1219–1230, Aug. 2014.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proc. of the 1st
ACM Symposium on Cloud Computing, SoCC’10, Indianapolis, Indiana,
USA, 2010.

[18] C. R. Lumb, A. Merchant, and G. A. Alvarez, “Facade: Virtual storage
devices with performance guarantees,” in Proc. of the 2nd USENIX
Conference on File and Storage Technologies, FAST’03, San Francisco,
CA, 2003.

[19] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: performance isola-
tion and differentiation for storage systems,” in Proc. of the 12th IEEE
International Workshop on Quality of Service, IWQOS ’04, Montreal,
Canada, 2004.

[20] M. Chalkiadaki and K. Magoutis, “Managing service performance
in NoSQL distributed storage systems,” in Proc. of 5th IEEE Inter-
national Conference on Cloud Computing Technology and Science,
CloudCom’13, Bristol, UK, 2013.

[21] E. K. Lee and C. A. Thekkath, “Petal: Distributed virtual disks,” SIGOPS
Operating Systems Review, vol. 30, no. 5, pp. 84–92, Sep. 1996.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. of the 2001 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, SIGCOMM’01,
San Diego, California, USA, 2001.

[23] M. Ghosh, W. Wang, G. Holla, and I. Gupta, “Morphus: supporting
online reconfigurations in sharded NoSQL systems,” in Proc. of the 2015
IEEE International Conference on Autonomic Computing, ser. ICAC ’15,
Washington, DC, USA, 2015.

[24] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler, “Scalable,
distributed data structures for internet service construction,” in Proc.
of the 4th Conference on Symposium on Operating System Design &
Implementation, OSDI’00, San Diego, California, 2000.

https://www.terena.org/mail-archives/storage/pdfVVqL9tLHLH.pdf
https://www.terena.org/mail-archives/storage/pdfVVqL9tLHLH.pdf
https://aws.amazon.com/dynamodb/
http://blog.sendwithus.com/using-dynamodb-production/
http://blog.sendwithus.com/using-dynamodb-production/
http://0x74696d.com/posts/falling-in-and-out-of-love-with-dynamodb-part-ii/
http://0x74696d.com/posts/falling-in-and-out-of-love-with-dynamodb-part-ii/
"https://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archDataDistributeDistribute.html"
"https://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archDataDistributeDistribute.html"
"https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html"
"https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html"

[25] J. Duggan and M. Stonebraker, “Incremental elasticity for array
databases,” in Proc. of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, Snowbird, Utah, USA, 2014.

[26] T. Dory, B. Mejas, P. Van Roy, and N.-L. Tran, “Measuring elasticity
for cloud databases,” in Proc. of the 2nd International Conference on
Cloud Computing, GRIDs, and Virtualization, Rome, Italy, 2011.

[27] Riak a successful failure. https://www.slideshare.net/GiltTech/
riak-a-successful-failure-11512791. Accessed: 07/2017.

[28] I. Konstantinou, D. Tsoumakos, I. Mytilinis, and N. Koziris, “DBal-
ancer: Distributed load balancing for NoSQL data stores,” in Proc. of
SIGMOD’13, New York, NY, USA, 2013.

[29] I. Konstantinou, E. Angelou, D. Tsoumakos, C. Boumpouka, N. Koziris,
and S. Sioutas, “Tiramola: elastic NoSQL provisioning through a cloud
management platform,” in Proc. of the International Conference on
Management of Data, SIGMOD, Scottsdale, Arizona, USA, 2012.

[30] A. Brown and D. A. Patterson, “Towards availability benchmarks: A
case study of software raid systems,” in Proc. of the USENIX Annual
Technical Conference, San Diego, California, 2000.

https://www.slideshare.net/GiltTech/riak-a-successful-failure-11512791
https://www.slideshare.net/GiltTech/riak-a-successful-failure-11512791

