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Motivation

Problem Statement

_ Tokens of Node_6_

* Elasticity in NoSQL data stores is used to adapt to workload variations

* Most data stores typically perform parallel data transfers to new (joining) node

— New node must receive data from all existing nodes for uniform data distribution

* All nodes are simultaneously reducing their processing capacity during data transfer

 New node capacity available only at the end of the elasticity action

« Significant I/O activity at the new node after data transfers complete

— Multiple compactions, cache misses

* Many-to-one communication pattern known to be a cause of throughput collapse
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Token-to-Node mapping
(replicated on all nodes)

T1 is owned by Node 2
T2 is owned by Node 4
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Incremental Elasticity Approach Incremental

Elasticity Benefits

Processing capacity increases in a stepwise incremental fashion

A new mechanism for scheduling data transfers during elasticity

Results to smoother elasticity action

Senders ta

Ke turns sending data to the new node
— Fewer nodes involved in network transfer at any time

As soon as a transfer is over, data become available for access on new node

Processing capacity of new node (and overall system) gradually increasing

Evaluation
Testbed

[/ AMD dual-core Opteron 275 servers, 12 GB memory

« Cassandra cluster starts with 5 servers, 6t server joins during elasticity action

1 client on dedicated server

Parallel streaming

— New node contributes to the cluster capacity during elasticity

Overhead of streaming nodes may be masked by other replicas

* Yahoo! Cloud Serving Benchmark (YCSB)
* 10 threads
* Workload: 95% reads / 5% writes, uniform key distribution

Incremental streaming
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% Throughput diff vs. pre-elasticity level




