FORTH

Institute of Computer Science

v/ \OLY

& -'?}.Y5:4
(B /> O
/ >, \
2 [~
S N
[P
"] o Ol B
[- \— RN
g . y
\ «, ':,4.,
5=, \
o
¢

{papaioan, magoutis}@ics.forth.gr

Motivation

Problem Statement

_ Tokens of Node_6_

* Elasticity in NoSQL data stores is used to adapt to workload variations

* Most data stores typically perform parallel data transfers to new (joining) node

— New node must receive data from all existing nodes for uniform data distribution

* All nodes are simultaneously reducing their processing capacity during data transfer

 New node capacity available only at the end of the elasticity action

« Significant I/O activity at the new node after data transfers complete

— Multiple compactions, cache misses

* Many-to-one communication pattern known to be a cause of throughput collapse

Incremental elasticity for NoSQL data stores
Antonis Papaioannou and Kostas Magoutis

University of Crete

Token-to-Node mapping
(replicated on all nodes)

T1 is owned by Node 2
T2 is owned by Node 4

T17 \| -

Node 1
i E T18, T20
Node 2 N
T17

}\ | T21
X
Node 3 T20, T22 Node 6
‘ 4{ T19, T23
N 4 \?
ode <
Node 5

\'I;okens of Node 6

Incremental Elasticity Approach Incremental

Elasticity Benefits

Processing capacity increases in a stepwise incremental fashion

A new mechanism for scheduling data transfers during elasticity

Results to smoother elasticity action

Senders ta

Ke turns sending data to the new node
— Fewer nodes involved in network transfer at any time

As soon as a transfer is over, data become available for access on new node

Processing capacity of new node (and overall system) gradually increasing

Evaluation
Testbed

[/ AMD dual-core Opteron 275 servers, 12 GB memory

« Cassandra cluster starts with 5 servers, 6t server joins during elasticity action

1 client on dedicated server

Parallel streaming

— New node contributes to the cluster capacity during elasticity

Overhead of streaming nodes may be masked by other replicas

* Yahoo! Cloud Serving Benchmark (YCSB)
* 10 threads
* Workload: 95% reads / 5% writes, uniform key distribution

Incremental streaming

500 , 140 500 140
! 130 - 130
l 120 - 120
: 1 110 110
400 |- 4
00 - 100 4 > 100
I > n
I 90 Q 90
I Py
= I . | 80 [> 80
o + # + g A @ Q T T i
2300 |-, g gl A 03 2 300 i s dtla e 70
\8: e A Ry ﬂ""'.’:""_'-' ;gmil;:y-i_' 60 qB)- 3 i S ECE U g SR WAl SRS s 60
= fRsi s 1 ’ =
Q_ * +_|‘_|'++ + + 50 S Q‘ | 50
+ e
= 40 = = ! 40
m 1 = (2l |
g 20T | 30 2 @ 200 . 30
> ! o0 I > ! 20
| 9 |
! 10 = | 10
| o\o |
100 - ! 1 0 100 - I | 1 O
! -1 -10 : : - -10
| | | |
I I - -20 | I - -20
| | | |
! . 1 -30 , , + -30
o e 10 o 1 g0
00:30:0 00:40:00 00:50:00 01:00:00 01:10:00 01:20:00 01:30:00 01:40:00 02:20:0 02:30:00 02:40:00 02:50:00 03:00:00 03:10:00 03:20:00 03:30:00
Time of day Time of day
Parallel streaming throttled (36 Mbps) Throughput of joining nhode
500 140 T
130 !
| 800 |- '
] 120 . |
400 100 !
> |
90 ﬁ I
. 80 G g 000r |
e | . o B L .
g 500 Bl b 3 B 500 | !
S A 60 “5’_ o I
— - 3 I
5— + I S0 > = I
i + + i+ | 40 "% *g’_ 400 |
M 1 [S c 1 1
¢ 200 | n , 30 3 S | 5
> I ++ I 20 &) g I <
I + I o — I Z x|
! R 10 £ ! % %!
| | o\o 1 | |
100 | | I I |1 | O X £
I I 1. A I
1 1 10 z% 1
I I - -20 I -
| | | _30 |
' ' ! read 2 write %
O....I...II....I...I.I....I....I...._40 ! ! ! T —— I A S S A
09:10:0 09:20:00 09:30:00 09:40:00 09:50:00 10:00:00 10:10:00 10:20:00 14:40:00 14:45:00 14:50:00 14:55:00 15:00:00 15:05:00
Time of day Time of day

The 37t IEEE International Conference on Distributed Computing Systems (ICDCS 2017), June 5-8, 2017, Atlanta, GA, USA

% Throughput diff vs. pre-elasticity level

