
Problem Statement

• Elasticity in NoSQL data stores is used to adapt to workload variations 

• Most data stores typically perform parallel data transfers to new (joining) node

– New node must receive data from all existing nodes for uniform data distribution

• All nodes are simultaneously reducing their processing capacity during data transfer

• New node capacity available only at the end of the elasticity action

• Significant I/O activity at the new node after data transfers complete

– Multiple compactions, cache misses

• Many-to-one communication pattern known to be a cause of throughput collapse

Motivation

Incremental elasticity for NoSQL data stores
Antonis Papaioannou and Kostas Magoutis

{papaioan, magoutis}@ics.forth.gr University of Crete

§

• Processing capacity increases in a stepwise incremental fashion

• Results to smoother elasticity action

− Fewer nodes involved in network transfer at any time

− New node contributes to the cluster capacity during elasticity

• Overhead of streaming nodes may be masked by other replicas

Incremental Elasticity Benefits

§

§

Evaluation

Incremental streaming

• 7 AMD dual-core Opteron 275 servers, 12 GB memory
• Cassandra cluster starts with 5 servers, 6th server joins during elasticity action
• 1 client on dedicated server

Incremental Elasticity Approach

Parallel streaming

The 37th IEEE International Conference on Distributed Computing Systems (ICDCS 2017), June 5-8, 2017, Atlanta, GA, USA

Testbed
• Yahoo! Cloud Serving Benchmark (YCSB)
• 10 threads
• Workload: 95% reads / 5% writes, uniform key distribution

 0

 100

 200

 300

 400

 500

 600

 700

 800

14:40:00 14:45:00 14:50:00 14:55:00 15:00:00 15:05:00

T
h

ro
u

g
h

p
u

t 
(r

e
q

u
e

st
s 

/ 
se

c)

Time of day

read write

• A new mechanism for scheduling data transfers during elasticity

• Senders take turns sending data to the new node

• As soon as a transfer is over, data become available for access on new node

• Processing capacity of new node (and overall system) gradually increasing

Throughput of joining node

 0

 100

 200

 300

 400

 500

00:30:00 00:40:00 00:50:00 01:00:00 01:10:00 01:20:00 01:30:00 01:40:00
-40
-30
-20
-10
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140

YC
SB

 T
h/

pu
t (

op
s/

se
c)

%
 T

hr
ou

gh
pu

t d
iff

 v
s.

 p
re

-e
la

st
ic

ity
 le

ve
l

Time of day

 0

 100

 200

 300

 400

 500

02:20:00 02:30:00 02:40:00 02:50:00 03:00:00 03:10:00 03:20:00 03:30:00
-40
-30
-20
-10
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140

YC
SB

 T
h/

pu
t (

op
s/

se
c)

%
 T

hr
ou

gh
pu

t d
iff

 v
s.

 p
re

-e
la

st
ic

ity
 le

ve
l

Time of day

 0

 100

 200

 300

 400

 500

09:10:00 09:20:00 09:30:00 09:40:00 09:50:00 10:00:00 10:10:00 10:20:00
-40
-30
-20
-10
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140

YC
SB

 T
h/

pu
t (

op
s/

se
c)

%
 T

hr
ou

gh
pu

t d
iff

 v
s.

 p
re

-e
la

st
ic

ity
 le

ve
l

Time of day

Parallel streaming throttled (36 Mbps)

T1
T2

T3

T4

T5

T6

T7

T8
T9T10

T11

T12

T13

T14

T15

T16

Node 6

Node 1

Node 2

Node 3

Node 4

Node 5

T17

T18

T19

T20

T21

T22

T23

Token-to-Node mapping 
(replicated on all nodes)

T1 is owned by Node 2
T2 is owned by Node 4

T17

T18, T20

T19, T23

T20, T22

T21

Tokens of Node 6

Tokens of Node 6


