
Problem Statement

• Elasticity in NoSQL data stores is used to adapt to workload variations 

• Most data stores typically perform parallel data transfers to new (joining) node

– New node must receive data from all existing nodes for uniform data distribution

• All nodes are simultaneously reducing their processing capacity during data transfer

• New node capacity available only at the end of the elasticity action

• Significant I/O activity at the new node after data transfers complete

– Multiple compactions, cache misses

• Many-to-one communication pattern known to be a cause of throughput collapse
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§

• Processing capacity increases in a stepwise incremental fashion

• Results to smoother elasticity action

− Fewer nodes involved in network transfer at any time

− New node contributes to the cluster capacity during elasticity

• Overhead of streaming nodes may be masked by other replicas

Incremental Elasticity Benefits

§

§

Evaluation

Incremental streaming

• 7 AMD dual-core Opteron 275 servers, 12 GB memory
• Cassandra cluster starts with 5 servers, 6th server joins during elasticity action
• 1 client on dedicated server

Incremental Elasticity Approach

Parallel streaming

The 37th IEEE International Conference on Distributed Computing Systems (ICDCS 2017), June 5-8, 2017, Atlanta, GA, USA

Testbed
• Yahoo! Cloud Serving Benchmark (YCSB)
• 10 threads
• Workload: 95% reads / 5% writes, uniform key distribution
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• A new mechanism for scheduling data transfers during elasticity

• Senders take turns sending data to the new node

• As soon as a transfer is over, data become available for access on new node

• Processing capacity of new node (and overall system) gradually increasing

Throughput of joining node
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Parallel streaming throttled (36 Mbps)
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Token-to-Node mapping 
(replicated on all nodes)

T1 is owned by Node 2
T2 is owned by Node 4
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