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Abstract—Elasticity actions in NoSQL data stores move large
amounts of data over the network to take advantage of new
resources. Here we propose incremental elasticity, a new mecha-
nism for scheduling data transfers to a joining server, leading to
smoother elasticity actions with a reduced performance impact.

I. INTRODUCTION

There is usually a trade-off between the duration of elas-
ticity actions and their performance impact. In this work we
focus on the performance impact of data elasticity actions in
NoSQL data stores. In particular we target data stores that
partition data horizontally in a fine-grain manner (referring to
data partitions as shards) and spread them as far as possible on
the available nodes for better load balancing. Several popular
data stores [1], [2], [3], [4] map keys to nodes using consistent
hashing [5]. The specific variation of consistent hashing used
in this work associates each physical node with a number of
tokens hashed to a ring. Each token identifies a key range,
starting from the previous token up to it. Keys are mapped
first to tokens and then to nodes. Cluster expansion via the
addition of a new node introduces a number of new tokens
to the ring. The new node takes responsibility for key ranges
identified by its tokens, and receives the corresponding data via
network transfers (streaming sessions) from previous owners.

One common option to carry out these network transfers [1],
[3], [4] is to perform them in parallel towards the new node,
raising a number of challenges: First, a large number of nodes
are simultaneously reducing their processing capacity while
engaged in data transfer. Second, the new node is solely
engaged in data transfer at the speed of its network link and
cannot contribute processing capacity until all data transfers
are over. Third, with all data transfers completing at about the
same time, associated activities such as data compactions are
likely to also overlap, resulting in significant I/O activity at
the new node during the early stages of its normal operation.
Fourth, the many-to-one communication pattern in this phase
is known to be a cause of throughput collapse in data centers
under certain circumstances [6]. Our incremental elasticity
technique introduced here aims to address these challenges.

Incremental elasticity replaces parallel network transfers
with a sequential communication schedule where senders
take turns sending tokens to the new node. As soon as a
transfer is over, the associated tokens are becoming available
for access on the new node, while a subsequent transfer of
tokens is taking place. The expected performance benefits of
incremental elasticity can be summarized as follows: Fewer
nodes are involved in network transfer at any time, reducing

the overall performance drop during elasticity. With tokens
becoming available on the new node as soon as token transfers
complete, processing capacity should increase in a step-wise
incremental fashion. When only a single sending server is
active at a time, the impact due to its higher load may be
masked by other replicas of the tokens that this sender owns.

Our contributions include a new elasticity mechanism for
NoSQL data stores called incremental elasticity; an implemen-
tation in the context of the Cassandra column-oriented key-
value store [1]; and an experimental evaluation of the benefits
of incremental elasticity vs. simultaneous parallel network
transfers under Yahoo! Cloud Serving Benchmark workloads.

II. DESIGN AND IMPLEMENTATION

To enable incremental elasticity we must coordinate data
transfers to a node joining the cluster, scheduling consecutive
pair-wise transfers between each of the existing nodes and the
new node. As soon as a streaming session is complete, the new
node starts to serve client requests on that subset of tokens.
In our implementation (extending Apache Cassandra version
3.7, particularly its streaming and gossip components) the new
node enters an intermediate state called incremental in which
it can serve requests while still streaming. Initially, the node
is in the bootstrapping state in which it does not serve client
requests. When the first streaming session is over, it enters
the incremental state, announcing it through a new type of
gossip message that informs the cluster that the joining node
has new data to serve. Nodes receiving this message update
their tokens-to-node mapping, redirecting client requests to the
new node. When all sessions are over, it enters the normal state
indicating that it has been fully integrated to the cluster.

Modifying the scheduling of token transfers means that we
must modify the handling of shadow writes (writes to keys
that are being streamed, going both to originating and target
nodes). In our implementation, only the tokens currently being
streamed are marked pending and being shadow-written until
the respective data transfer completes. This reduces the load
that shadow-writes place on the joining node during streaming.

III. EVALUATION

Our experimental testbed is a cluster of 7 servers, each
equipped with a dual-core AMD Opteron 275 processor
clocked at 2.2GHz with 12GB of main memory. All servers
run Ubuntu 14.04 64-bit with a 3.14.1 Linux kernel and are
interconnected via a 1Gb/s Ethernet switch. Servers store data
on a dedicated 300GB 15,500 RPM SAS drive that delivers
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(a) Parallel streaming
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(b) Incremental streaming

Fig. 1: Elasticity under YCSB workload A (50% read, 50% writes), consistency QUORUM, larger dataset (45 million records)
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Fig. 2: Request rate served by joining node during streaming

120MB/s in sequential reads and 250 IOPS in random reads
with a 4K block size. Hard drives are formatted with the ext4
file system. We use Cassandra version 3.7 with the OpenJDK
1.8.0-91 Java runtime environment. Our evaluation workload is
the Yahoo Cloud Serving Benchmark (YCSB) [7] version 0.11
executing on a dedicated server. The benchmark is configured
to produce a 50%-50% mix of reads vs. updates/writes with
requested keys selected uniformly at random. Our initial Cas-
sandra cluster consists of 5 servers. During elasticity actions
a 6th node joins the cluster. The replication factor is set to 3.

We use a 45M-record YCSB dataset (27GB of start-
ing data per node) resulting in an I/O bound system. The
number of YCSB client threads is set to 10, empirically
determined to stress the cluster while keeping average re-
sponse time under 40ms (considered a reasonable threshold).
We used the default settings for node caches, namely key
cache enabled and row cache disabled. Unless stated oth-
erwise, we do not limit each node’s streaming throughput
(stream throughput outbound megabits per sec set to 0). For

repeatability, we modified the default token partitioner to en-
sure that each Cassandra node will be responsible for serving
the same key ranges across experiments. The dataset is loaded
fresh onto Cassandra nodes before each experiment.

Figure 1 presents the YCSB throughput involving a 50%-
50% read/write mix (workload A) with consistency level QUO-
RUM. Elasticity with parallel streaming (Figure 1a) exhibits a
strong performance penalty ranging from -14% to -34% at
04:50h. Under incremental streaming (Figure 1b) the system
exhibits a smoother transition to the new configuration with a
maximum performance hit slightly below -10% at 06:40h.

Figure 2 illustrates that the joining node indeed serves
progressively more client requests (reads/writes served locally
–not coordinated– by the joining node) during streaming.

These results show that incremental elasticity results in
smoother, more stable elasticity actions compared to parallel
network transfers, demonstrating that incremental elasticity
can be an important mechanism towards rapid adaptation with
low performance impact in NoSQL data stores.
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