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Abstract—In this paper we investigate replica-group recon-
figuration as a way to mask performance bottlenecks on the
primary node of a primary-backup replication group in a NoSQL
data store. We investigate the benefit of changing replica-group
leadership prior to resource-intensive background tasks such
as LSM-tree compactions or data backups on the primary
node, a method that can improve throughput by up to 23%
during LSM-tree compactions and by 35% during backup tasks.
Our implementation is based on MongoRocks (MongoDB 3.7
and RocksDB 5.7) using leveled compaction. We experimentally
demonstrate the performance impact of compactions and data
backups when they occur at replica-group primaries, and the
benefits of targeted leadership-change actions. We evaluate our
system using the Yahoo Cloud Serving Benchmark (YCSB) and
compare to unmodified MongoRocks on dedicated infrastructure.

I. INTRODUCTION

Data replication is a standard technique for achieving high
data availability and reliability, and a range of data replication
techniques are essential components of distributed storage
systems today [1]. Dynamic reconfiguration of replica groups
has received significant attention recently [2], [3], [4], [5] as
the importance of adjusting the number and type of nodes
backing replica groups with minimal downtime has become a
key system requirement of Internet applications.

Primary-backup (PB) replication [6] is a strongly consistent
replication technique in widespread use today [4], [7], [8],
[9]. Systems implementing PB replication feature a strong
leader (the primary) that coordinates write operations (in some
systems, reads as well) towards secondary replicas (backups).
Any PB implementation must handle failure of the primary
by electing a new primary within the current configuration, as
a standard reconfiguration action (a view change). In recent
years, certain PB implementations offer APIs that externally
trigger such reconfiguration actions for management purposes.

Being on the critical path of I/O activity, the primary in a
PB system typically takes higher load than secondary repli-
cas. Any additional overhead on the primary may critically
affect performance of the replica group as a whole. Recent
research [10] demonstrated use of targeted leadership-change
actions as a driver for lightweight adaptation of replica groups,
by moving the primary away from nodes that are, or will soon
be, heavily loaded. In this way, a certain level of load balancing
is feasible at low cost (the short availability lapse that such
reconfigurations entail), occasionally leading to large benefits.

Leadership change has also been proposed in the context of
Byzantine fault tolerance for mitigating attacks in which a
leader intentionally misbehaves [11]. Use of leadership-change
in BFT settings, while partly sharing goals with our work,
differs in terms of the policies and mechanisms involved.

The research in this paper aims to systematically explore the
policies and mechanisms underlying replica-group leadership
change and its potential for masking performance issues in
NoSQL data stores. Previous work studied leadership-change
under mostly write-intensive workloads in a shared cloud
infrastructure using a proof of concept research prototype [10].
This paper extends previous work by describing the general
design of such a system, evaluating more sources of overhead
(LSM-tree [12] leveled compactions and data-backup tasks)
and a wider range of workload mixes in a dedicated cluster, us-
ing an industrial-strength implementation based on MongoDB
and an LSM-tree based storage manager, RocksDB [13].

We outline the general design of such a system by defining
the states each replica can be in (primary or secondary,
performing a background task or not) and their transitions,
and highlight the key policies and mechanisms involved. We
further present key implementation choices we made within
MongoDB/RocksDB, in maintaining global information about
node activities for ranking nodes as candidates for primary,
coordinating between the independent replication (MongoDB)
and storage (RocksDB) layers, and ensuring that our preferred
candidate can always be elected by the PB election algorithm.

Our experimental evaluation highlights the performance
benefits of reconfiguration actions in the case of LSM-tree
compactions and data backup processes. There are other
known performance issues, such as slow system response dur-
ing checkpoint writing [14], that could be similarly addressed
by our system and that we plan to evaluate in future work.

Our key contributions in this paper are:
• A description of the design concepts (replica states,

transition policies, and underlying mechanisms) in us-
ing replica-group leadership change as a performance
enhancing mechanism in primary-backup replication

• Addressing key challenges in an implementation of
the design within an industrial-strength NoSQL data
store (MongoDB) and storage manager (RocksDB) using
LSM-trees with leveled compaction

• An evaluation of the prototype under two sources of
periodic performance impact on replica-group nodes:



LSM-tree compactions and data backup tasks.
The remainder of this paper proceeds as follows: In Sec-

tion II we provide background on MongoDB replication
and RocksDB. In Section III we describe the design and
implementation of our system. In Section IV we discuss our
experimental evaluation, and in Section V we conclude.

II. BACKGROUND

As background to our design and implementation in Sec-
tion III we describe the basic operation of replication on Mon-
goDB [15] and RocksDB [13], the storage manager we use in
this work. In general, MongoDB stores data in documents.
It groups documents in collections (akin to tables), partitions
data via sharding, and replicates shards as explained below.

MongoDB replication. MongoDB replicates shard data using
primary-backup replication [6]. Each replica group has a single
primary and multiple secondaries. Our brief discussion of the
replication protocol is based on online documentation [16]
and inspection of the source code (MongoDB version 3.7). A
primary is associated with a given term, indicating the election
number at which it was elected. The primary inserts each client
update it receives to an operation log (the OpLog) stored as
a local file and then (asynchronously) applies it to its local
copy of the database. Secondaries pull OpLog entries from
the primary or from another secondary, known as their sync-
source node. Each secondary stores fetched updates to its own
OpLog and applies them to their own database copy. In our
experiments the sync-source is always set to be the primary.

All MongoDB nodes maintain topology and status informa-
tion about other nodes in the cluster. Each node communicates
regularly (in heartbeats every 2 seconds) with all other nodes
to check their status, to stay up to date with their sync source
(fetching OpLog entries), and to notify them of their progress.

A node runs an election when it has not seen a primary
within the election timeout, or during explicit reconfiguration
(termed a priority takeover). The election process is based
on the Raft [4] protocol. When a candidate wins an election,
it notifies all nodes via a round of heartbeats. It then checks
if it needs to catch up with the former primary. This process
tries to commit as many as possible of the entries the last
primary managed to send to secondaries, but may not have
managed to commit (they will otherwise be rolled back).
Prior to accepting writes, the primary-elect drains its OpLog
from previous-term entries by applying them to the database.

RocksDB. The implementation of MongoDB we employ in
this work uses RocksDB [13] as a storage engine. RocksDB
stores data in Log-Structured Merge (LSM) trees [12]. It
applies each incoming update to a write-ahead log for dura-
bility and then to an ordered memory buffer (the memtable),
periodically flushed to an immutable indexed ordered file (the
SSTable). To retrieve a requested key, a number of SSTables
may have to be consulted. Periodic compactions (merge-sort
runs) of SSTables aim to maintain a small number of large
SSTables, improving read performance. RocksDB implements

leveled compactions [17], initially proposed in LevelDB [18],
a key-value storage engine written at Google.

The MongoDB OpLog is implemented as a specific col-
lection type called a capped collection, built as a circular
buffer. It is a fixed-sized collection that automatically over-
writes its oldest entries when it reaches its maximum size.
MongoRocks monitors the size of the OpLog collection and
reduces it via compaction. Due to heavy overwrite activity,
the OpLog involves significant data-discarding during com-
pactions, affecting overall performance. Thus MongoRocks
triggers compaction periodically even if the size of the OpLog
has not reached its limit. OpLog compactions have higher
priority in the queue of pending compaction operations.

III. DESIGN AND IMPLEMENTATION

Design. Our design goal is to mask the impact of resource-
intensive background activities on replica-group performance.
Such activities, caused by internal storage-system needs (such
as LSM-tree compactions) or external tasks (such as automated
backup jobs), are often essential for smooth operation and
cannot be avoided or postponed for too long, as doing so
impacts application performance and/or data availability. The
key idea is to demote a primary who is about to engage in
such a resource-intensive background task into a secondary,
in effect executing such tasks on secondary nodes only. The
key mechanisms that facilitate this design are:

• Notifying the primary that a background task is upcoming
• Reconfiguring the group with minimal service disruption.
• Maintaining a global view of background tasks executing

on replica group members. Each replica ni periodically
gossips the following status to the group: whether there
is a background task (internal or external) executing on
ni; when the last background activity completed on ni.

A state machine describing the states a replica can be in and
possible transitions is depicted in Figure 1. For concreteness
and without loss of generality we assume that the background
activity we aim to mask is LSM-tree compactions, however
other (and different types of) activities are supported. A
primary starts in state P, NC (primary, non-compacting) and
each secondary in S, NC (secondary, non-compacting). A
reconfiguration moves the primary from P, NC → S, NC and
a secondary from S, NC → P, NC. Two key policy decisions
are when to trigger a reconfiguration and when that happens,
which secondary is the best choice for new primary:

Policy 1: When is reconfiguration beneficial. A primary
decides that a reconfiguration of the replica group is worth-
while when a background task is upcoming on the primary
and the anticipated performance impact justifies the cost (short
availability lapse) of reconfiguration. The impact of the type
of background tasks we consider in this paper (LSM tree
compactions, data backups) nearly always justifies a reconfig-
uration. In future work we intend to broaden our investigation
to a wider range of background activities, including shorter
background activity spikes.

Policy 2: What is the best choice for new primary (if
any). Another key policy is selecting the replica to promote



Report status to RG and start compacting

Need to compact  && 
(!worth reconfiguring (Policy 1) || postponed too long)

P, NC S, NC
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Demote current primary in favor of node X

Worth reconfiguring (Policy 1) && 
good choice for new primary (X) exists (Policy 2)

No action taken (postpone compaction)
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no candidates for new primary exist (Policy 2)
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Report status to RG 
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Need to compact

Report status to RG

Done compacting

Fig. 1: States of a single replica (P: primary; S: Secondary; NC: not compacting; C: compacting) and transitions

to next primary. The selection process is based on a replica-
ranking (RR) algorithm that takes into account the gossiped
state of all replicas. The RR algorithm on the primary consid-
ers all secondaries that are not executing an internal or external
background task as candidates for new primary. If there are
more than one candidates, the algorithm by default favors the
node that most recently completed an internal background task
(“most recently completed”, MRC). Since internal tasks (such
as compactions) are usually periodic, the expectation is that
this candidate should enjoy a longer background-activity-free
period until its next internal background task.

Another option is to select the candidate that served as
primary for the longest time in the past (“longest-served
primary”, LSP). Since all replicas maintain an in-memory read
cache but only nodes that serve client requests (primaries) use
it (secondaries only fetch updates to their OpLogs, bypassing
their cache), LSP effectively favors nodes with warmer caches.

Policies 1 and 2 (when to reconfigure and whom to promote)
may in some cases be inter-related: A reconfiguration may be
called as soon as the background task on a recently-demoted
primary is over (even though there may not be a pending
compaction on the current primary), turning the leadership
to the previous primary. This joint policy choice (an LSP
variant we term “preferred primary”) in which a single node
acts as primary, except for periods when it performs heavy
background tasks, is geared to promote high cache hit rates.

If there is no suitable candidate (e.g., if all secondaries are
compacting), the primary postpones its background activity
(P, NC → P, NC) and re-evaluates its decision as soon as it
receives a status update from any of the secondaries that may
point to a suitable candidate. The primary decides to start
the activity anyway (P, NC → P, C) if the reconfiguration
is not worthwhile or if it has been postponing it for too
long. Secondaries that need to perform a resource-intensive
background task are allowed to proceed (S, NC → S, C).
During that period they are ineligible to become primary.

A key challenge for our work is that a suitable candidate for
primary may not be always easy to elect in existing variants

of primary-backup [4], [7], [8], [16]: Most such election
algorithms require that the elected primary is a node that has
seen all committed proposals, whereas our optimal choice for
next primary may be a node that has not participated in a
committing majority for a long time (e.g., due to a heavy
activity in the past on their side). To ensure that our choice for
new primary does not lead into a state where the node cannot
be elected within a reasonable amount of time, if the candidate
fails to get a majority of votes (voters’ OpLog being ahead
of the candidate’s OpLog) the current primary steps down
(prohibiting new updates) so that the primary-elect catches
up with the latest OpLog entries and request that replicas vote
again, eventually ensuring success.

Implementation. Our implementation is based on Mon-
goDB [15] with the RocksDB engine [13] (MongoRocks [19]).

MongoDB has built-in support for reconfiguring a replica
group. Replicas regularly exchange a ReplicaSetConfig struc-
ture, listing all nodes in the replica group at a particular config-
uration version. Changes in the configuration are indicated by a
change in the version number and propagated from the primary
(downstream) to all nodes. Each replica-group member has a
priority property that affects the timing and thus the outcome
of elections for primary. When a node learns of the new
ReplicaSetConfig, it ranks all of the priorities listed there and
assigns itself a timeout proportional to its rank

(priority rank + 1) × election timeout

After the timeout expires, it checks if it is eligible to run for
election, and if so it starts an election.

In our implementation, we programmatically assign priori-
ties to each node in a new ReplicaSetConfig as indicated by
our replica-ranking (RR) algorithm. The node we aim to elect
as new primary has higher priority than the current primary.
We modified the priority takeover timeout to activate the action
as soon as possible. In practice, reconfiguration completes
within a few hundreds of milliseconds.



Each replica-group member maintains a view of the current
background tasks running on all replicas as input to the
RR algorithm. All members periodically report their status
over the regularly-exchanged MongoDB heartbeats. We use
the RocksDB internal compaction statistics API to expose
the counter of currently-running compactions (rocksdb.num-
running-compactions property) to the MongoDB layer and em-
bed this information to every heartbeat message. The receiver
extracts information from heartbeats from each replica-group
member and derives when the last compaction ran on each
node. Our RR algorithm selects only between non-compacting
nodes and by default favors the one with the most-recently
completed compaction (MRC policy). In addition to LSM-tree
compactions, the current implementation carries information
about and handles externally-triggered data backup tasks.

Reconfigurations of the replica group can only be triggered
by the primary. To re-instate the previous primary (“preferred
primary” policy), the current primary monitors the status of
its predecessor (now a secondary) based on its periodically
reported status. When the current primary notices that the
“preferred primary” has completed its internal background
activities, it triggers elections proposing it as a candidate.
We have observed in our experimental evaluation that the
preferred-primary policy promotes good cache behavior as the
primary maintains a fresh cache for a long period of time.

RocksDB communicates with MongoDB over a sockets
channel to notify it of a compaction task and ask its permis-
sion to start it. If the MongoDB replica is a secondary, it
responds positively. If it is primary, MongoDB asks RocksDB
to defer the compaction and starts a reconfiguration. RocksDB
uses a pending-compaction-queue to remember the database
that requested the compaction. When the node transitions
to secondary, RocksDB goes over entries in the pending-
compaction-queue to reconsider delayed compactions. We use
MongoDB’s ReplicationCoordinator public API to expose in-
formation about replica state transitions to the storage engine.

MongoRocks uses compaction tasks to reduce the size of
the OpLog. By default it triggers OpLog compactions at least
every 30 minutes, even if the OpLog has not reached its limit.
Assuming that all members of a replica set start at the same
time, this would normally lead all nodes to perform their
OpLog compactions in sync. In this way there would be no
available non-compacting replica to replace the primary. In
our implementation we randomize this time interval on every
node to be between 30 to 45 minutes. In our experiments the
system was always able to find a non-compacting replica.

IV. EVALUATION

Our experimental testbed is a cluster of 4 servers, each
equipped with a dual-core AMD Opteron 275 processor
clocked at 2.2GHz with 12GB of main memory. All servers
run Ubuntu 14.04 64-bit with a 3.14.1 Linux kernel and are
interconnected via a 1Gb/s Ethernet switch. Servers used as
MongoDB servers have a base 72GB 10,000 RPM SCSI drive
with an additional 300GB 15,500 RPM SAS drive dedicated
to storing data. All hard drives are formatted with ext4.

We use MongoDB 3.7 with RocksDB 5.7 as storage engine.
Our evaluation workload is the Yahoo Cloud Serving Bench-
mark (YCSB) [20] version 0.11 executing on a dedicated
server. The benchmark is configured to produce two different
mixes of reads vs. updates/writes: 90%-5% (read intensive)
and 50%-50% (write intensive), with requested keys selected
randomly with the Zipf distribution. The YCSB evaluation
dataset consists of 12 million unique records or 15GB of data
per node. Our initial MongoDB cluster consists of one shard
and 3 servers in the replica group. The number of YCSB client
threads (number of parallel connections between database
client and servers) is set to 2. We set MongoDB’s write
concern to one, meaning that writes are considered complete
when acknowledged by the primary. We use journaling, which
requires OpLog entries to be durable (written to disk) before
acknowledging. We use the default settings for RocksDB:
max background jobs, the maximum number of concurrent
background jobs (including flushes and compactions) is set
to 2, and compaction style set to level. The dataset is loaded
fresh onto MongoDB nodes before each experiment. In the
following two sections we evaluate the benefit of recon-
figuration actions in the presence of LSM-tree compactions
and data backups. The default RR policy, MRC, is used in
all experiments. A comparative evaluation of RR policies is
beyond the scope of this paper and subject of future work.

A. LSM-tree compactions

Figure 2 depicts YCSB throughput (ops/sec) under the read-
intensive workload mix. As in all subsequent figures, time (x-
axis) starts one hour into the experiment, when the system
is deemed to have reached a steady state. Figures 2a and 2b
depict performance without and with reconfigurations. Colored
squares at the top of a graph (and corresponding vertical
dashed lines) represent elections of a node as primary. Hor-
izontal solid lines represent compaction tasks performed on
a node. Each line may represent more than one sequentially-
executing compaction tasks at different levels [17].

Figure 2a exhibits a clear performance hit during the com-
paction tasks at the primary node (indicated by horizontal
orange lines labeled “node 1”). The average throughput during
the one-hour window shown is 295 ops/sec. During primary
compactions the average throughput is 253 ops/sec, whereas
non-compacting time periods have an average throughput of
310 ops/sec. Thus there is a 18.4% performance hit during
compaction tasks at the primary.

Performance exhibits a more stable behavior under the
automated replica-group leadership change mechanism (Fig-
ure 2b), achieving an average of 318 ops/sec over the one-hour
window. Overall our system exhibits 7.2% higher throughput
during the one-hour window. Compaction tasks in this exper-
iment were mostly due to growth of the OpLog database.

Figure 3 presents YCSB throughput under the write-
intensive workload. Figure 3a exhibits a clear performance hit
during the compaction tasks on node 1 (primary). The average
throughput for the one-hour window is 239 ops/sec. Average
throughput during compactions is 194 ops/sec, whereas non-
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Fig. 3: 50% reads-50% writes

compacting periods (on primary) have an average throughput
of 252 ops/sec. There is thus a 23% performance hit during
compactions on the primary. Throughput using reconfigura-
tions exhibits a more stable rate (Figure 3b) achieving on
average 250 ops/sec. Under the write-intensive workload the
system achieves on average 4.2% higher throughput. We
observe that our results are not sensitive to the read/write
ratio as compactions are mostly OpLog-driven and in both
cases have relatively low frequency. However, the performance
improvement of reconfigurations in these representative runs
is significant (18%-23%) during compactions in both cases.

B. Data backup

We extend our evaluation to external background tasks, and
study performance while taking an online data backup with the
MongoDB mongodump utility [21]. We use the –oplog option
to capture incoming writes that occur during the mongodump

operation into a file, ensuring that backups are point-in-time
snapshots of the database state. During the backup process, the
tools force a running database instance to read all data through
memory. Reading infrequently-used data has the side effect of
evicting frequently-accessed data from the cache, causing the
performance of the regular database workload to deteriorate.

Figure 4 exhibits the impact of the backup process on per-
formance while executing a read-intensive workload. Figure 4a
shows a clear performance hit during the backup task (whose
duration is indicated by the vertical dashed lines) when there
is no reconfiguration action. The average throughput achieved
during the one-hour window is 266 ops/sec. At 02:30 mon-
godump completes the extraction of data and begins to copy
OpLog entries. The OpLog dump has no effect on the cache
in contrast to the previous phase, where throughput was more
noisy. At the end of the backup process there is an overlapping
compaction task that results in a further performance degra-
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Fig. 4: Data backup (mongodump –oplog), 90% reads-10% writes

dation. The average throughput during the background tasks
(backup and compaction) is 229 ops/sec, whereas average
throughput when no background task executes is 314 ops/sec.
The system achieves 35% higher throughput when there are
no background activities on the primary.

Figure 4b exhibits performance when applying a reconfig-
uration action prior to the backup. At 20:16 the system is
notified about the upcoming external background task and the
primary initiates a replica-group reconfiguration to mask its
impact. The RR algorithm selects node 2, the replica with the
most recently completed compaction (default policy), as the
new primary. Node 2 serves as primary for the first time and
therefore it initially suffers from low cache-hit ratio (causing
the performance dip at 20:16), gradually increasing perfor-
mance. This has not been a problem in previous experiments
as the role of primary had been rotated around nodes a few
times already before the measurement phase began, warming
up caches. In this case, the average throughput during the one-
hour window is 306 ops/sec, 15.8% higher average throughput
than standard (non-reconfiguring) MongoDB. In addition, our
system benefits the data backup task itself, as there is lower
contention for resources in secondary nodes. The elapsed time
of the backup task in our system is 21.5% shorter than the
non-reconfiguring system (1,349 vs. 1,640 sec).

V. CONCLUSIONS

In this paper we evaluate the performance benefits of auto-
mated replica-group reconfigurations under the impact of peri-
odic sources of overheads such as LSM-tree compactions and
data backup tasks, using the YCSB benchmark. We find that
targeted leadership change actions lead to 18-23% improved
performance during execution of compaction tasks and 4-
7% improved performance overall for LSM-tree compactions.
Replica-group leadership change prior to a data backup task
on the primary leads to 35% better performance and 21.5%
faster backup compared to standard MongoRocks.
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