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Abstract—Scalable stream processing systems require external
storage systems for long-term storage of non-emphemeral state.
Recent research have pointed to scalable in-memory key-value
stores, such as Redis, as an efficient solution to external man-
agement of state [1], [2]. While such data stores have been in-
terconnected with scalable streaming systems, they are currently
managed independently, missing opportunities for optimizations,
such as exploiting locality between stream partitions and table
shards, as well as coordinating elasticity actions.

I. INTRODUCTION

Scalable stream-processing systems (SPSs) and analytics are
key to a number of high data-volume Internet services [2],
[3], [4], [S]. A stream application can be modeled as a
directed dataflow graph comprising processing operators, as
shown in Fig. [T} Each operator transforms data flowing from
its inputs to its outputs. Stateless operators produce their
output based on the current inputs, whereas stateful operators
preserve a sequence of recent data as its internal state and
apply a transformation on a subset of its incoming data (e.g.
aggregating values over a time window).

Early SPSs stored ephemeral operator state either in mem-
ory or on an external data store (e.g., a SQL server). Modern
systems store operator data using a combination of an embed-
ded local key-value store (KVS) and a remote scalable KVS
for fault-tolerance [6], [7]. External state (streams produced
by other applications or even by other systems [3], [4]], [S] or
ground-truth table data, can be accessed during the execution
of a streaming application (see "External State’ in Fig. [I).
External state represents data whose lifecycle is disconnected
from that of the streaming application, and stored on (typically
scalable) KVSs [3]], [4]l, [8]. In contrast, internal state of a
streaming application refers to intermediate (ephemeral) data
used by operators of the application. While it is important to
store internal state in a reliable, recoverable manner for fault-
tolerance, persistence of external state is a separate concern.
Current state-of-the-art solutions, such as IBM InfoSphere
Streams, use scalable KVSs such as Redis, for scalable
storage of external state. However, lack of coordination in
the placement/partitioning policies of SPSs and external-state
KVSs, results to often unnecessary network cross-talk, and
mis-alignment of adaptation policies such as elasticity.

Our research focus is to highlight the benefits of coor-
dinating placement/partition policies of scalable SPSs and
external-state KVSs. In this poster we report prelimininary
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Fig. 1: Streaming application used in this work

experimental results from a representative application (derived
from the Yahoo streaming benchmark [8]]) on the Flink [7]] SPS
using Redis as an external-state KVS and discuss ongoing
and future work on carrying over these results to larger
scale experiments, and to compare to previous work using
commercial state-of-the-art systems [1]], [2]].

II. RELATED WORK

Existing scalable SPSs provide ways to interact with scal-
able external stores, viewing them as source/sink operators that
exercise an API to a scalable KVS such as Cluster Redis [6]],
[7]. IBM InfoSphere Streams offers distributed process store,
a remote interface to a scalable data store [1/], demonstrated to
support scalable setups in commercially relevant use cases [2].
Accessing external table state in the common path of stream
processing is known to be a cause of overhead (higher la-
tency, as well as protocol overhead). With out-of-core datasets
stored as external state (e.g., user profiles in large Internet
services [3l], [S]], [6]), external state is a pain point that is not
well addressed so far. In this poster we provide quantitative
evidence that locality is indeed worthwhile in modern testbeds,
and describe future work to extend the results as well as
address ways to achieve them (by aligning stream partitions
and table shards to achieve locality). In particular, there is
recent research on incremental elastictity of SPSs [9] and
KVSs [10], using similar techniques, that however need to
be coordinated to preserve locality between the two systems.

III. PRELIMINARY RESULTS

In this section we discuss preliminary results of our ongoing
research work. Our results quantify the performance benefits
of aligning the data placement of an external store (Redis) with



stream processing tasks. Our use case is an application derived
from the Yahoo Streaming Benchmark (YSB) [8]], programmed
and deployed on the Flink [7] SPS. We ingest load using a
synthetic data generator similar to that in YSB. Figure [I| shows
the dataflow of our application. The application reads events
from Kafka, deserializes the JSON string, filters the event
types and keeps (projects) the necessary fields. It then performs
a join operation on each event to map the ad_id of each input
tuple to its associated campaign_id. This information is
maintained in a Redis database storing external state (tables).
The join operation is implemented with a FlatMap operator
which takes one input element and produces zero, one, or more
output elements. In our case, it performs a get request to the
Redis store in order to map the ad_id of every incoming
tuple to the corresponding campaign_id (similar to YSB).
After the join, data are partitioned by the campaign_id field
before the window operator splits the stream into buckets of
10 seconds and write the output to a Redis database.

We aim to study the performance impact of collocated
vs. remote placement of the Redis store relative to the join
operator task. As the join operator interacts with Redis on each
incoming tuple, it is on the critical path of stream processing,
and thus we expect that a collocated Redis will provide an
advantage for streaming application performance. We measure
the throughput of the join operator using a custom operator
(Throughput monitor) that we developed for this purpose.

Our experimental testbed consists of four servers, each
equipped with a Intel Xeon Bronze 3106 8-core 1.70GHz
CPU, 16GB DRAM, 256GB Intel D3-S4610 SSD, Ubuntu
Linux 16.04.6 LTS, interconnected with a 10Gb/s Dell N4032
switch. We dedicate a server for the data generator and Kaftka
service. In our first scenario, the application logic and Redis
instance are deployed on a single server (local). A third node
is used only in runs with a remote Redis instance (remote).
We run experiments with one or three parallel instances of
each processing operator (single-1, single-3) all deployed on a
single node. The system exhibits up to 1.77x higher throughput
when the external state is colocated with the join operator due
to eliminating network overhead in accessing Redis (Figure [2)).

Next we study a multi-node scaling scenario using Redis in
clustered mode. We use three servers as processing nodes, each
hosting an instance of Flink operators and a node of the Redis
cluster. In the first case (remote), data are randomly spread
across the three Redis nodes by Redis’ native partitioning
scheme. Each operator accesses data on its local and remote
Redis instances. In a second scenario (local) we replicate all
data in each of the three Redis nodes, ensuring that each
processing operator can access all external state locally. The
system exhibits 1.66x higher throughput in local compared to
remote (Figure 2] multi-3). Speedup is slightly higher in single-
3 compared to multi-3 as the latter exhibits slighly higher
throughput in the remote Redis configuration. This is because
multi-3 remote satisfies a fraction of get requests locally
whereas in single-3 remote all requests are satisfied remotely.
Our results validate and quantify the benefits of locality
in accessing external state over high-performance hardware,
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Fig. 2: Throughput of join operator

motivating further research in larger scale benchmarks.

IV. FUTURE WORK

Preliminary results validate that exploiting data locality
between processing tasks (SPS) and external state (KVS) can
lead to significant (1.7x) performance improvements in small-
scale setups by reducing cross-talk between processing tasks
and the corresponding external state over the network. To the
best of our knowledge, such collocation has not been explored
in previous work [2]], [4]; we expect that coordination between
SPS and KVS will lead to similar measurable benefits when
extended in deployments over larger clusters. Control over data
placement however requires the coordination of actions on
both stream processing and distributed data stores, including
during adaptation actions such as elasticity. Although there are
efficient elasticity mechanisms for KVSs [[10] and SPSs [9]], we
are pursuing the integration and coordination of such actions
in a SPS-KVS system.
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