
On-demand VM provisioning and dynamic
application deployment using SmartFrog

Antonis Papaioannou, Damianos Metallidis and Kostas Magoutis
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)
Heraklion 70013, Greece

Email: {papaioan,metal,magoutis}@ics.forth.gr

I. PURPOSE OF DOCUMENT

The purpose of this document is to present in more
detail how we extend the applicability of SmartFrog to on-
demand provisioning of cloud VMs and dynamic deployment
of software components on them as described in [refenrece
paper]. We model VMs as SmartFrog component objects,
similar to any other application component. Each of these VM
objects has its own lifecycle, state, configuration parameters,
and management events.

II. SMARTFROG CODE AND RUNTIME SUPPORT

We have SmartFrog-enabled the software stack of a repre-
sentative enterprise application, the SPEC jEnterprise2010 [1]
benchmark. The software stack includes the JBoss application
server, MySQL database server, application logic packaged
in an enterprise archive file (specj.ear), and a load balancer
interposed between load-generating clients and application
servers (the inclusion of a load balancer is an enhancement
over the standard version of SPEC jEnterprise, which supports
a single application server instance). The SmartFrog version of
SPEC jEnterprise2010 operates as follows: Each component
(JBoss, MySQL, load balancer) includes a sfStart() method
that triggers the installation and deployment of the respective
component. Components terminate via the sfStop() function.

The SmartFrog management code for SPEC jEnter-
prise2010 comprises the following four main components

• Virtual machine, dynamically provisioned in a public,
private or hybrid cloud

• Database server

• Application server

• Load balancer, responsible for spreading client load
over multiple application servers

Listing 1 shows SmartFrog declarations of abstract com-
ponents that will be extended and referenced later in .sf
files. A key abstract component is Public Cloud VM, which
represents the provision of VMs of a specific type. The
attributes of Public Cloud VM include the cloud provider the
VM is going be deployed on, the type of the VM (e.g small,
medium, etc), an indication of which software component
will be deployed on it (taking values in LB (load balancer),
AS (application server), DB (database), etc). An important
attribute in Public Cloud VM is VM IP whose value is late
bound to the IP address of the VM when the latter is

provisioned and started. Late bound variables in Listing 1
are declared using SmartFrog’s TBD keyword. The binding
is performed in the sfDeployWith() function of any concrete
VM class that extends Public Cloud VM (see Listing 2). LB
and ReconfigureLB are the SmartFrog components responsible
for deploying and reconfiguring the load balancer during a
migration. The LB component consists of two attributes, the
IP address of the load balancer, and the IP of the provisioned
application server (Worker IP). The SmartFrog declarations
for the initial deployment of a full SPEC jEnterprise2010
software stack are shown in Listing 2.

Listing 1: Abstract SmartFrog code
Public Cloud VM e x t e n d s Prim{

s f C l a s s ” . . . ” ;
C l o u d P r o v i d e r TBD;

VM IP TBD;
typeOf TBD;
SoftwareTypeVM TBD;

}
LB e x t e n d s Prim{

s f C l a s s ” . . . ” ;
LB IP TBD;

Worker IP TBD;
}
Reconf igureLB TBD;

To respect provisioning and deployment dependencies we
use SmartFrog’s Compound statement to link the lifecycles
of grouped components. Within a Compound (Listing 2)
components are first deployed in the stated sequence prior to
being started in the same sequence, as shown graphically in
Figure 1.

Listing 2 shows a Compound deployment structure where
the VMs that the application server and database server are
going to be deployed on are provisioned first. The code
that performs the actual provisioning is pointed at by the
sfClass attribute (details omitted for clarity). Then component
Application Instance deploys the application logic (expressed
in specj.ear) and connects to the IP addresses of the provi-
sioned database and application servers. Finally a load bal-
ancer instance is provisioned and deployed. The LoadBalancer
component expresses the load balancer reconfiguration logic.
Note that components expressing middleware to be deployed
on previously provisioned VMs in Listing 2 (such as Applica-
tion Instance) are late-bound and cross reference the VM IP
attribute of their underlying VM. Similarly components at
higher levels (such as LB Instance) cross reference attributes
of their underlying middleware components.



AS_VM
Component

AS_Instance
Component

DB_VM
Component

Application_
Instance

Component

LB_VM
Component

LB_Instance
Component

Deploy Sequence

Start Sequence

1 2 3 4
5

6 7 8 9 10

Fig. 1: Solid (red) arrows denote deployment sequence (”happens before”); Dashed (blue) arrows denote start action sequence.

Listing 2: Initial Deployment SmartFrog code
I n i t i a l D e p l o y m e n t e x t e n d s Compound{

AS VM e x t e n d s Public Cloud VM{
C l o u d P r o v i d e r ”Amazon ” ;
VM IP ” NotKnownYet ” ;
typeOf ”m1 . s m a l l ” ;
SoftwareTypeVM ”AS ” ;

}
AS Ins t ance e x t e n d s Prim{

s f C l a s s ” . . . ” ;
AS Name ” JBoss −1”;
AS IP LAZY AS VM: VM IP ;

}
DB VM e x t e n d s Public Cloud VM{

C l o u d P r o v i d e r ”Amazon ” ;
VM IP ” NotKnownYet ” ;
typeOf ”m1 . s m a l l ” ;
SoftwareTypeVM ”DB” ;

}
A p p l i c a t i o n I n s t a n c e e x t e n d s Prim{

s f C l a s s ” . . . ” ;
DB Name ”MySQL−1”;
AS IP LAZY AS vm : VM IP ;
DB IP LAZY DB VM: VM IP ;

}
LB VM e x t e n d s e x t e n d s Public Cloud VM{

C l o u d P r o v i d e r ”Amazon ” ;
VM IP ” NotKnownYet ” ;
typeOf ”m1 . s m a l l ” ;
SoftwareTypeVM ”LB ” ;

}
LB Ins t ance e x t e n d s LB {

LB Name ” mod jk−1”;
LB IP LAZY LB VM: VM IP ;
Worker IP LAZY AS VM: VM IP ;

}
}

Listing 3 shows the onEvent component (part of Smart-
Frog’s workflow [2] architecture) that handles the adaptation
event. The Load Balancer component handles the arrival of
one or more events describing conditions that require adapta-
tion. The singleEvent attribute declares whether the onEvent
component should respond once or multiple times to the arrival
of a potential stream of events. sfProcessComponentName
declares the name of the component for resolution purposes.

Listing 3: onEvent SmartFrog code
LoadBa lance r e x t e n d s OnEvent{
s i n g l e E v e n t f a l s e ;
sfProcessComponentName ” LoadBa lance r ” ;

Reconf igureLB e x t e n d s LAZY LB{
s f C l a s s ” . . . ” ;
WorkerIP LAZY HOST M i g r a t i o n P r o v i s i o n e r I P :

AS IP : VM IP ;

LB IP LAZY HOST I n i t i a l P r o v i s i o n e r I P :
VM LB: VM IP ;

}
}

Listing 4 shows a sendEvent component (also part of
SmartFrog’s workflow architecture) that triggers the event
called ReconfigureLB on a specific host and software com-
ponent via specific references, in this case the LoadBalancer
component (Listing 3).

Listing 4: sendEvent SmartFrog code
Lo ad Ba la nce rE ve n t e x t e n d s EventSend{

sendTo : a LAZY HOST I n i t i a l P r o v i s i o n e r I P :
LoadBa lance r ;

e v e n t ” Reconf igureLB ” ;
}

REFERENCES

[1] “SPEC jEnterprise2010 Benchmark,” Accessed 5/2014. [Online].
Available: http://www.spec.org/jEnterprise2010/

[2] “SmartFrog Workflow,” Accessed 3/2014. [On-
line]. Available: http://www.hpl.hp.com/research/smartfrog/releasedocs/
smartfrogdoc/sfWorkflow.html

http://www.spec.org/jEnterprise2010/
http://www.hpl.hp.com/research/smartfrog/releasedocs/smartfrogdoc/sfWorkflow.html
http://www.hpl.hp.com/research/smartfrog/releasedocs/smartfrogdoc/sfWorkflow.html

	Purpose of document
	SmartFrog code and runtime support
	References

