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Abstract—Incremental checkpointing (IC) is a fault-tolerance
technique used in several stateful distributed stream processing
systems. It relies on continuously logging state updates to a
remote storage service and periodically compacting the update-
log via a background process. We highlight a tradeoff between the
intensity of compaction of the IC update-log (and the associated
resource overhead) and its impact on recovery time in such
systems. We also highlight the control parameters that can
be used to adjust this tradeoff in the Apache Samza stream
processing system, and demonstrate this tradeoff experimentally.

Index Terms—distributed stream processing, incremental
checkpointing, high availability

I. INTRODUCTION

Achieving high availability in distributed stream-processing
systems is important due to the stringent uptime demands
of Internet services such as Google [1], Tweeter [2], and
LinkedIn [3]. Streaming applications often use stateful opera-
tors, such as window and join, as part of continuous queries
that may accumulate large amounts of state in different forms
over time. One way to represent such state is as key-value
pairs [4], stored in memory, local disk, and/or remote disk to
provide different performance and reliability characteristics.

Approaches to high availability in stream-processing sys-
tems [5] include active standby (where operator state is
actively replicated in another node’s memory), passive standby
(where operator state is replicated in backup storage), and
upstream backup where recovery is achieved simply by replay-
ing tuples from upstream operators and/or queues, which log
tuples until explicitly receiving acknowledgment to drop them.
Active standby is expensive in terms of memory requirements,
while upstream backup results in high recovery time when
reconstructing state requires replay of a large number of tuples.

An instance of the passive backup approach is checkpoint-
rollback [6], which periodically constructs a checkpoint of
each operator’s state and stores it in durable storage. The con-
structed checkpoint could include the entire state, or just the
“diff” from the previous checkpoint (incremental checkpoint-
ing). Periodic full-state checkpointing often relies on complex
techniques such as copy-on-write [7] to avoiding freezing
the operator during checkpoint production. Incremental check-
pointing advances over full-state checkpointing by continously
writing incremental state updates, spreading checkpointing
overhead over time. On failure, the operator loads its latest
checkpoint (all incremental “diffs” that constitute a full image

of operator state must be loaded from disk up to the most
recent full checkpoint) and then replays messages from the
input stream, from the last tuple that has contributed to the
last checkpoint at the time of the failure and on. Since a long
sequence of incremental checkpoints (which in effect form
a log) increase recovery time, traditional approaches bound
recovery time by periodically producing a full checkpoint,
throwing away previous incremental checkpoints.

Several incremental checkpointing approaches in use in
distributed stream processing systems today [3], [8] differ
from the traditional approach in that instead of periodically
taking a full checkpoint, they apply periodic compaction on
the evolving sequence (log) of incremental checkpoints. In
this way, the log of incremental checkpoints is continuously
maintained by removing deleted and overwritten items, rather
than periodically thrown away and replaced by a new full
checkpoint. Storing operator state in a local (embedded) key-
value store while also asynchronously saving the log of incre-
mental checkpoints to a remote disk combines performance
(reading/writing a local store) and reliability aspects (recoving
from a local store when possible, or from remote disk in the
general case) and is followed in several systems today [3], [8].

While the overhead of periodic full checkpointing in trans-
action processing systems is generally well understood, the
impact of periodic compaction operations on incremental
checkpoints of stateful stream-processing operators has not
been studied in the past. Frequent compaction would reduce
the amount of state that must be loaded from the log of
incremental checkpoints, reducing recovery time, however it
would also impact performance on the node that performs the
compaction. Our main contribution in this paper is in high-
lighting this tradeoff in a real implementation (Apache Samza)
and in demonstrating the practical effects of tuning relevant
parameters, the interaction of which might not be immediately
predictable. The presented experiments are aimed to motivate
future research on exploring mechanisms for automatic tuning
of the explored parameters, towards a methodology by which
incremental checkpointing can be tuned to a specific operating
point of (resource use, recovery time), opting for low recovery
time or low resource impact or a level in between.

II. BACKGROUND

We provide more details on incremental checkpointing
through a more detailed description of the experimental plat-



form (Apache Samza) used in this paper. Samza [3] (Fig-
ure 1) implements incremental checkpointing by logging state
updates to each window1. Samza logs state updates to a
remotely hosted pub-sub topic implemented by the Kafka log
manager [9] called a changelog, and simultaneously writes
them to a local embedded key-value store (KVS), RocksDB,
for fast local access. Logged (incremental) updates to window
state may include each tuple entering a window, when all
such tuples are retained in the window (to be emitted as a
window pane [1] at window-closing time) or the new value
of a quantity being maintained for each window (when using
an aggregating function, also known as a FoldLeft function).
At regular intervals (by default per minute), Samza flushes
(commits) the changelog to Kafka and persists the corre-
sponding input-stream offset. Samza obsoletes information
previously written to the changelog whenever it writes a new
value (an overwrite) or when closing a window (deleting the
window state and all tuples in the corresponding window
pane). Deleted information does not get removed from the
changelog until compaction, thus it increases recovery time as
it needs to be loaded and played to recover local KVS state.

Fig. 1. Incremental checkpointing on local and remote stores (Samza)

In Samza, a window operator supports two options for
maintaining accumulated state. In the first option (RetainAll
(RA), the default), each emitted result from the operator
(window pane) maintains all input tuples that have entered
the window. In this option all input tuples must be kept on
the store. The internal key used to store window tuples as
key-value pairs in this case comprises

• the key of the input tuple (key of the window)
• the window’s opening timestamp, and
• a sequence number to identify individual tuples within a

window (pane)
There is a second option (FoldLeft function (FLF)), where

each tuple contributes to a value (e.g., a counter) maintained
in that window, and that value is eventually the emitted result

1A window is a finite chunk of tuples within an infinite stream, used for
processing such tuples as a group.

from the operator. In this option, only the counter must be
kept on the store, however the procedure to get (read) the
previous value in order to update the counter requires flushing
the counter to the disk at each read. This is to ensure that
what is read by the operator is reliably stored on disk prior to
reading it (for consistency after a crash).

The internal key-value store key used to store the window
value in this case is the combination of

• the key of the input tuple (key of the window)
• the window’s opening timestamp
Discarding (overwriting or tombstoning) state: We deter-

mined that Samza overwrites the single-valued state of a
FoldLeft function window with a new version after each
update to it (e.g., incrementing a counter). When the FoldLeft
function window closes, Samza deletes that state by writing
an explicit tombstone (null value for that key). In the case
of a regular window pane (where all window tuples are
stored through separate keys), closing a window results to
deleting each individual key within that window, i.e., writing
tombstones (null values) for each individual key of that
window pane. Cleaning the Samza changelog of deleted state
is handled by the Kafka broker(s). The frequency and intensity
of compaction is configurable, as described in Section III.

We note that other stream-processing systems implementing
incremental checkpointing exhibit similar tradeoffs. Flink,
another popular stream-processing system, implements in-
cremental checkpointing by periodically and asynchronously
backing up the diff of the set of immutable on-disk structures
(termed SSTables) storing RocksDB tables [10] representing
operator state, to a remote distributed file system. Addition-
ally, an experimental approach, CEC [11], writes incremental
operator-state updates to a parallel file, interspersed with out-
put tuples in the operator’s output queue. As in any log where
obsolete information piles up over time, these incremental
checkpointing systems also involve a form of compaction to
reduce the size of the incremental-checkpoints log.

III. EVALUATION

Our experimental testbed consists of four servers, each
equipped with a Intel® Xeon Bronze® 3106 8-core CPU
clocked at 1.70GHz, 16GB DDR4 2666MHz DIMMs, and a
256GB Intel SSD, running Ubuntu Linux 16.04.6 LTS. The
nodes are interconnected through a 10Gb/s Dell N4032 switch.
The software versions used are Samza version 1.1.0, Kafka
version 0.10.1.1, Zookeeper 3.4.3, and Yarn version 2.6.1. A
typical Samza/Kafka deployment is shown in Figure 2.

A. Operator-state recovery from changelog

In this experiment we measure the time to reconstruct
the local state of an operator in RocksDB from the remote
changelog. This is necessary after disk failure, requiring task
restart at a new machine (e.g., when the previous host is
not available). We used a streaming application featuring a
window operator with an input load of 1M, 3M, and 6M tuples
(single producer), where each tuple had the same key (and thus
routed to a single window). The input stream had one partition



Fig. 2. Typical Samza setup (Kafka broker hosted on node 1)

and thus Samza constructed one task within a single Samza
container (on node 2).

We experiment with both options of handling the window
state per key, FLF and RA. These two options differ on how
tuples are stored (Section II) and on failure handing. With
FLF, each update for the same window has the same key on
the changelog (overwriting previous versions), whereas in RA
each emitted record of window state has a different key. This
could play a significant role in restoration since in the first
case we need to restore just the latest record of the aggregated
value, whereas in the second case, all records that belong to
a window state need to be restored. We observed that in the
Samza implementation we worked with, log compaction is not
enabled by default on the changelog (handled by Kafka broker
on node 1).

Normally, after the closing of a window, Samza emits tomb-
stones to the changelog for records contained in the window.
In experiments in this section, we use windows with long
duration (60 minutes), remaining open for the entire runtime
of the experiment (i.e., no closing of windows and emission
of tombstones). We experiment with inputs of 1M, 3M, and
6M records with FLF windows (same key for window in
changelog records), and similarly with RA windows (different
key per changelog record). After the processing of the tuples
and forming of the operator state, we kill the container hosting
the window and destroy the local store. This has as effect that
on restart, the container has no access to its (previously local)
state and thus need to restore from the changelog.

We measure the time to restore operator state. More pre-
cisely, we measure the time to consume changelog records and
rebuild local state in RocksDB, excluding time related to other
activities such as creation of threads to consume the changelog,
creation of the local store, etc. Our results reported in Table I
are averages of 3 runs with negligible standard deviation.
Column FLF of Table I depicts results with FLF windows,
restoring a changelog of 1-6M records with all records having
the same key (Section II). Had log compaction been performed
prior to the crash in this case, we would need much less time to
restore from the changelog, since compaction would eliminate
most records but the last. In the second case (Table I, column
RA) all keys on the changelog are distinct.

TABLE I
TIME TO RESTORE WINDOW STATE (IN SECONDS)

Number of tuples
Window type

FLF RA

1M 2.6 1.8

3M 8.4 4.4

6M 17.1 9.2

Comparing FLF to RA for the same number of input tuples
(the changelog has about the same number of records in both
cases), the difference in restore time (8.4s vs. 4.4s for 3M
tuples) can be explained by the fact that in FLF we have 3M
updates for the same key whereas in RA we have 3M inserts
for 3M keys, resulting in different RocksDB per-key costs. The
results exhibiting a near linear relationship between restore
time and number of input tuples (1-6 million). Restore takes
longer for FLF vs. RA windows for the same amount of state
in all cases.

Overall, our results indicate that restore time can differ
based on changelog size and type of window, demonstrat-
ing that it is important to configure log compaction on the
changelog. The following section evaluates the impact of
specific compaction settings on changelog size and on resource
requirements.

B. Changelog compaction policies: Log size vs. CPU

Given the direct relationship between changelog size and re-
covery time, we are interested to evaluate policies for limiting
changelog size and their cost. The experiments in this section
measure the impact of Kafka log compaction configuration
parameters on changelog size and associated CPU usage on
the node responsible for log compaction (Kafka broker hosted
on node 1).

We perform experiments on windows of small duration
(1 second) with 3M input tuples in which tuples had a key
chosen uniformly at random from a set of 10 distinct keys.
Frequently closing windows result in frequent emission of
tombstone tuples on the changelog, one tombstone for each
different key. We perform experiments for both FLF and RA
window types. The input stream had a single partition and thus
Samza constructed one task within a Samza container.

In terms of configuration parameters, we keep the number
of compaction threads fixed at two, and vary the dirty-ratio
threshold (min.cleanable.dirty.ratio) and time at which the
currently active log segment closes, becoming available for
compaction (log.segment.ms). The min.cleanable.dirty.ratio
parameter indicates the minimum ratio of dirty log to total
log for a log to be eligible for compaction, in other words
it indicates how frequently log-compaction threads will try
to compact the logs of a topic. If there is no log with a
dirty ratio over that threshold, the compaction threads sleep
for a specific time (default=15,000ms). The log.segment.ms
parameter indicates how often Kafka creates a new segment
for the log, at which point it becomess active (the segment
that receives new records is not eligible for compaction).
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Fig. 3. FLF, No Compaction
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Fig. 4. RA, No Compaction
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Fig. 5. FLF, Relaxed settings
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Fig. 6. RA, Relaxed settings
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Fig. 7. FLF, Aggressive settings
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Fig. 8. RA, Aggressive settings

We perform experiments without the activation of log
compaction to observe the evolution of changelog size over
time and the baseline CPU usage (without log compaction)
on the machine otherwise responsible for compaction (node
1). We also performed experiments with the log compaction
enabled, more specifically for segment.ms=100ms and seg-
ment.ms=1000ms, and for 3 different dirty ratio thresholds
(0.01, 0.33, 0.66). These settings are empirically decided
to demonstrate different compaction intensity levels in our
deployments; they are not otherwise considered special or
exhaustive. The higher the segment.ms the longer the active
segment will remain locked, and the more uncompacted data
will be available to be compacted when discharged from
being active. A higher dirty ratio will lead to fewer, heavier

compactions. The deletion.retention.ms parameter (at the level
of a topic, or log.cleaner.delete.retention.ms at the level of
server), the amount of time to retain tombstone markers
(deletes) for log compacted topics, is fixed at 100ms.

Starting with the study of FLF windows, Figures 3, 5, and
7 depict the evolution of the changelog topic partition size
(in MB) without compaction, using Relaxed settings (dirty
ratio: 0.66, segment.ms=1000ms), and Aggressive settings
(dirty ratio: 0.01, segment.ms=100ms), respectively. A lower
segment.ms makes dirty data available for compaction more
frequently, allowing cleaning to proceed, keeping changelog
size low. We observe that the Aggressive approach keeps
changelog size low most of the time. With the Relaxed ap-
proach the maximum changelog size occasionally (but not fre-



quently) reaches 10MB. Without any compaction, changelog
size reaches 200MB at the end of experiment (Figure 3). CPU
usage on the node that hosts the Kafka broker is about 18%
without compaction, about 20% with the Relaxed policy, and
about 42% with the Agressive policy. The results show that the
Relaxed policy manages to exercise some control over the size
of changelog with low overhead (about 2% over the baseline
CPU usage without log compaction). However, restore time
can still be significant when the changelog reaches large sizes
(in the order of 5-10MB), making a case for the Aggressive
policy when short recovery times are required.

Moving to the study of RA type windows, Figures 4, 6,
and 8 depict the evolution of the changelog topic partition
size (in MB) without compaction, and with the Relaxed and
Aggressive settings respectively. With RA type windows and
with frequently closing windows, we have more tombstones
(null-value records, as many as the tuples that entered the win-
dow pane) than on the FLF, resulting in a longer changelog. In-
creasing the dirty ratio results to a larger size for the changelog
with much more data to be compacted. We observe that the
Aggressive policy manages to keep the size below 200MB for
the entire experiment. With Relaxed settings, changelog size
exceeds this limit but after a compaction, the size temporarily
falls back. Without log compaction, changelog size reaches
600MB the end of the experiment (Figure 4).

Figure 9 summarizes CPU utilization for the node hosting
the Kafka broker in all experiments. The CPU (used for regular
log management as well as for log compaction) was about 44%
with Aggressive compaction, about 20% for Relaxed com-
paction, and about 18% without compaction, highlighting the
increased resource requirements of the Aggressive compaction
policy. The results also indicate that spending a little more
CPU (about 2%) results to a smaller changelog in contrast
with the case of disabled compaction. A general observation
is that changelog size is generally higher for RA compared to
FLF for the same compaction settings, due to the more tuples
being produced in the former case. This indicates that more
CPU would normally have to be consumed to achieve the same
level of changelog size for RA windows (compared to FLF
windows). In our experiments we use the same compaction
settings for each policy in the FLF and RA cases, thus it is
not surprising that we do not observe a measurable difference
in CPU usage between the two (in other words, we would
have to set more stringent settings for the same policy for RA
windows to achieve the same level of changelog size, as with
FLF windows).

Overall, our experiments demonstrate that aggressive com-
paction settings lead to shorter changelog sizes at the expense
of more CPU use at Kafka broker(s). Our experiments also
demonstrate that a shorter changelog leads to lower recovery
time in restoring operator state, when local recovery is not an
option. Given suitable tuning of the configuration parameters
controlling compaction, we can achieve specific recovery-time
goals by taking advantage of understanding of the relationship
between compaction parameters, changelog size, and recovery
time (through experiments such as those described in this

Fig. 9. CPU on node hosting the Kafka broker (A: Aggressive; R: Relaxed;
WC: without compaction

section). A global goal may be dictated by the need to
accommodate as many changelog topics as possible within a
set of Kafka resources, while achieving the minimum possible
recovery time for operator states. The methodology to achieve
this would set compaction parameters at their most stringent
level feasible without exceeding available (CPU) resources at
the broker. A local goal could dictate a specific recovery-time
objective for a particular task (operator), which would map
to appropriate compaction settings to achieve that goal for
the specific operator type (FLF, RA). A measurement-based
methodology [12] could automate the mapping of goals to
control parameters, but a combined approach would be needed
to balance local and global goals under resource constraints.

IV. RELATED WORK

Due to space limitations, we refer the reader to the survey
of To et al. [13] for background on state management in
distributed stream processing systems and on incremental
checkpointing techniques in general. There are several incre-
mental checkpointing approaches in use in distributed stream
processing systems today [3], [8]. Having discussed Samza [3]
and Flink [8] in previous sections, we will relate our work
to another previous approach of incremental checkpointing,
continuous eventual checkpointing (CEC) [11].

CEC proposed logging partial operator state in the form of
control tuples, along with regular operator output tuples, in a
persistent representation (e.g., a file) of the output queue, as
shown in Figure 10. This approach was demonstrated for FLF-
type windows and offers the freedom to not capture all updates
to the log (since there is always the option to reconstruct some
parts of the state through tuple replay at the input). A control
tuple atomically records in the log the current number of open
windows, the state of a given window, and the timestamp
of the input tuple that has triggered this state update. If all
open windows are guaranteed to have some record on the log,
then recovery is possible by going back in the output log and
finding out the latest “footprint” of each open window, then
replaying input tuples from the earliest timestamp.

In CEC, recovery of the operator state has to load a set of
q tuples (Figure 11) containing a footprint from each of the
operator’s open windows at the time of the crash. The amount



Fig. 10. Continuous eventual checkpointing (CEC)

of tuples to read is determined by the oldest such footprint
(wk in Figure 11). More frequent partial-state logging can
reduce the CEC extent (in effect compacting it), thus reducing
recovery time, at the expense of a higher overhead [11].

Fig. 11. CEC extent (q) and replay tuples (u) to be read during recovery [11]

Flink relies on a similar scheme, using RocksDB for local
recovery when possible, and backing up immutable SSTables
of RocksDB to a remote file system. The log-compaction
tradeoff described in this paper and applied to Samza as a
case study, has also a parallel to this related system: In Flink,
obsolete checkpointed state (via explicit deletes or overwrites)
is handled by RocksDB, which is scheduling local compaction
operations. Restoring operator state from remote uncompacted
SSTables means that more information than needed needs
to be loaded during state reconstruction, penalizing recovery
time. Thus, the investigation performed in this paper has wider
implications and can apply to other incremental-checkpointing
systems.

V. CONCLUSIONS

We note that a tradeoff between checkpointing frequency
and recovery time exists even in traditional databases, where
frequent checkpointing reduces the size of the log that needs
to be replayed. The tradeoff in the case of incremental check-
pointing of stateful streaming operators has a different cause,
namely the compaction that needs to be performed on a log
that may contain overwritten or deleted (tombstoned) tuples,
which penalize recovery. We highlighted similarities between
other incremental checkpointing approaches, most notably
Flink [8] and CEC [11], and pointed out that compaction of
an update log is at the core of maintaining size limits and
thus bound recovery time in other approaches as well. We

believe that establishing relationships (through measurements)
between control parameters, log size, and recovery time can
be applied to other incremental-checkpointing systems, con-
tributing to controlled systems that can guarantee user goals
for recovery time and performance.
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